<span>Выпишите номера признаков, характерных для человеческой аскариды.
2.Тело с двусторонней симметрией.
5.Кишка заканчивается анальным отверстием.
6.Личинка развивается в легких, но с кровью попадает в сердце и печень.
8.Раздельнополое животное.
9.Размножается в кишечнике человека.
11.Тело покрыто плотной кутикулой, защищающей червя от пищеварительных соков.
13.Самка больше самца.
15.Есть пищеварительная и нервная система.</span>
1 Свободноживущие плоские черви питаются преимущественно как хищники. Паразитирующие черви питаются либо путём всасывания питательных веществ через ротовое отверстие, либо впитывают их через всю поверхность тела осмотическим путём.
Свободно живущие плоские черви передвигаются ползком или вплавь. Этому способствуют кожно-мускульный мешок и реснички. Паразитирующие черви при передвижении могут пользоваться присосками (передвигаются по типу гусеницы-землемера). Ленточные черви используют перистальтику кожно-мускульного мешка.
3 Многоклеточные животные для переноса веществ имеют особые системы органов.
У них перенос питательных веществ и газов выполняет кровь или гемолимфа, образуя особую систему – кровеносную. Она состоит из сердца и сосудов,по которым движется кровь. Например, дождевой червь имеет развитую кровеносную систему. Она состоит из сосудов, по которым движется кровь. Кровь – жидкость красного цвета, которая находится внутри кровеносных сосудов.
5 незамкнутая кровеносная система (сосуды прерываются щелевидными пространствами) ; у некоторых высших беспозвоночных, всех позвоночных животных и человека замкнутая кровеносная система (кровь движется только по сосудам) .
Аорта начинается с нижней части горла до соединения с плечевыми мышцами!
Классификация микроскопов может производиться на основании различных параметров, например: назначение, способ освещения, строение оптическое системы и так далее. В данной статье будет рассматриваться самая общая классификация в зависимости от величины разрешения микрочастиц, которые можно рассмотреть в данный конкретный микроскоп.
Итак, все микроскопы мира можно разделить на оптические (световые), электронные, рентгеновские и сканирующие зондовые микроскопы. Наиболее популярными являются оптические микроскопы, которые широко представлены в магазинах оптики. Данные микроскопы позволяют решать основные исследовательские задачи. Другие виды микроскопов относятся уже к специализированным, и используются в основном в лабораториях.
Оптические микроскопы. Оптический световой микроскоп состоит из механической, оптической и осветительной частей. С помощью такого микроскопа можно различать микрочастицы до 0,20 мкм, а максимальное увеличение микроскопа составляет 2000 крат. Оптические микроскопы подразделяются на подвиды в зависимости от назначения: биологические, металлографические, поляризационные и так далее (более подробно о внутренней классификации здесь). О строении оптического микроскопа можно узнать из статьи «Конструкция микроскопа».
Электронные микроскопы. Электронные микроскопы позволяют добиться гораздо большего увеличения, чем оптические. Все дело в использовании пучка электронов вместо светового потока, благодаря чему электронный микроскоп обеспечивает увеличение до 200 000 раз. Что касается разрешающей способности, то она в 1000 раз превосходит разрешающую способность оптического светового микроскопа. В конструкцию электронного микроскопа входят специальные магнитные линзы, которые управляют движением электронов. Подробнее об электронных микроскопах читайте в соответствующей статье.
Рентгеновские микроскопы. Действие таких микроскопов основано на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нм, что позволяет исследовать с их помощью очень малые объекты. Исходя из разрешающей способности рентгеновские микроскопы по их мощности можно позиционировать как нечто среднее межу оптическими и электронными микроскопами (разрешающая способность около 2-20 нм).
Сканирующие зондовые микроскопы. Такой микроскоп Вы вряд ли приобретете для домашнего использования. Это уже специализированный класс микроскопов, в котором для построения изображения используется специальный зонд для сканирования поверхности. Благодаря такому микроскопу получают трехмерное изображение с очень высоким разрешением (вплоть до атомарного). Благодаря рекордному разрешению (менее 0,1 нм) такие микроскопы позволяют видеть молекулы и атомы, а также воздействовать на них (при этом объекты могут изучаться не только в вакууме, но и в газах и жидкостях)