Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках.
"Опасные" точки сразу видны, это:
1)
- знаменатель обращается в 0.
2)
- по обычаю проверяется эта точка.
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов:
(при
→<span>∞)
</span>
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
(при
→∞)
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
(при
→∞)
Итак:
1)
→+∞ предел равен
2)
→-∞ предел равен
3)
→0 предел равен:
4)
→
По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала
- мы получаем отрицательное основание).
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).