Вычислите площадь фигуры, ограниченной графиком функции y= |x^2 - 4| ,Вычислите площадь фигуры, ограниченной графиком функции y= |x^2 - 4| , отрезком [-1;2] оси ОХ и прямой х=-1
На отрезке [-1;2] x^2-4<=0 поэтому y=Ix^2-4I =4-x^2
y=4-x^2 -это парабола ветви которой направлены вниз.
Необходимо найти площадь фигруры ограниченной сверху параболой y=4-x^2 снизу прямой Ох на отрезке от x1=-1 до x2=2
S=интегр[от -1 до 2](4-x^2)dx = (4x-(1/3)x^3)I от x=-1 до x=2 I=
=4*2-(1/3)*2^3 - 4*(-1)+(1/3)*(-1)^3 = 8 - 8/3 + 4 -1/3 =12 -9/3 =9
Для того, чтобы находить и точки экстремума, и наибольшее с наименьшим необходимо работать с проихводной и с подстановкой значений крайних точек отрезка.
Ищем производную:
1) y' = 12/cos^2(x) - 12. Приравниваем ее к нулю для нахождения точек экстремума. (часто именно точки максимума и минимума могут быть наим и наиб значениями функции):
12/cos^2(x) - 12=0;
12/cos^2(x)=12;
cos^2(x)=1; (по правилу пропорции определить лёгко)
сosx = 1 или cosx=-1
x = 0 x = Пи
далее определям через занки производной возростание и убывание функции, по итогаам сих рассуждений получим: Пи - точка минимума. (значит, не подходит), а 0 - просто точка, через нее функция ни возрастает, ни убывает
2) находим значения функции на концах отрезка [-пи/4; пи/4]:
а) y(-Пи/4)= 12tg(-Пи/4) - 12(-Пи/4) + 3Пи - 13 = 12 + 6Пи - 13 = -1 (я не учел 6Пи - это оборот целый, он ничего не значит в данном случае и им можно пренебречь)
б) y(Пи/4) = 12tg(Пи/4) - 12(Пи/4) + 3Пи - 13 = 12 - 6Пи + 3Пи - 13 = -Пи - 1 = -4,14 (приближенно)
Итог: у нас есть точки -4,14 и - 1. большая из них -1. Это и есть ответ.
Динамометр показывает силу взаимодействия подвешенного тела с планетой. Сила эта зависит от ускорения свободного падения. Для Земли 9,81м/с^2, а для Луны 1,62 м/с^2. Ускорение свободного падения на Луне в 6 раз меньше земного и показания динамометра будут в 6 раз меньше т. е. около 2,7 Н
.............................