Сначала приведем функцию в более простую форму.
y = 1/2*(|x/(3/2) - (3/2)/x| + x/(3/2) + (3/2)/x) = 1/2*(|2x/3 - 3/(2x)| + 2x/3 + 3/(2x))
y = |x/3 - 3/(4x)| + x/3 + 3/(4x)
1) Пусть x/3 - 3/(4x) < 0, то есть
(4x^2 - 9)/(12x) < 0
(2x + 3)(2x - 3)/(12x) < 0
x ∈ (-oo; -3/2) U (0; 3/2)
Тогда |x/3 - 3/(4x)| = 3/(4x) - x/3
y = 3/(4x) - x/3 + x/3 + 3/(4x) = 3/(4x) + 3/(4x) = 3/(2x)
y(-3/2) = 3/2 : (-3/2) = -1 - это точка минимума
2) Пусть x/3 - 3/(4x) >= 0, то есть
Точно также получаем
x ∈ [-3/2; 0) U [3/2; +oo)
Тогда |x/3 - 3/(4x)| = x/3 - 3/(4x)
y = x/3 - 3/(4x) + x/3 + 3/(4x) = 2x/3
y(3/2) = 2/3*3/2 = 1 - это тоже точка минимума.
В этих двух точках и будет одно пересечение с прямой y = m
Вот на рисунке примерный график этой функции.
1) 600:6*1=100(м²)-занимает газон
2) 600:3*1=200(м²)-занимает сад
12 м3 = 12 000 литров
12 000 : 5 = 2400 литров/час - 1-я труба
2400 : 60 = 40 литров/мин
12 000 : 10 = 1200 литров/час - 2-я труба
1200 : 60 = 20 литров/мин
40 + 20 = 60 литров /мин - 2 трубы вместе
<span>12000 : 60 = 200 мин - время, за которое можно наполнить бассейн из двух труб</span>