область определения функции y=x ln x от нуля до бесконечности, не включая нуль
2) y(-x)=-x ln x - общего вида.
3) точки пересечения с осями:
Oy, но х≠ 0, значит точек пересечения с осью y нет.
Ox: y=0, то есть x ln x=0
x=0 или ln x=0
0 ¢ D(y) x=e0
x=1
(1;0) – точка пересечения с осью х
4) Найдем производную функции:
y’=x’ ln x + x(ln x)’=ln x +1
5) критические точки:
y’=0, то есть ln x +1=0
ln x=-1
x=e-1
x=1/e (≈ 0,4)
y’=0 , если x=1/e , значит x=1/e – критическая точка.
6) Обозначим критические точки на координатной прямой и определим знак
функции:
-1/e
- +
1/e
x=1/(2e); y’=log(2e)-1+1=1-ln(2e)=1-ln e=-ln 2<0
x=2e; y’=ln(2e)+1=ln 2+ln e+1=ln 2+2>0
7) Так как на промежутке (0;1/е) y'(x)<0 то на этом промежутке функция убывает
Так как на промежутке (1/е; бесконечность) y'(x)>0 то на этом промежутке функция возрастат.
Следовательно точка х=1/е является точкой минимума.
8) экстремумы функции:
ymin=y(1/e)=1/e ln e-1=-1/e (≈ -0,4).
9)
Горизонтальной асимптоты у функции нет, поскольку предел функции при стремлении х в плюс бесконечность равен плюс бесконечности.
Вертикальные асимптомы- подозреваемая точка х=0(граница области определения).Чтобы узнать, будет ли х=0 вертикальной асимптотой надо найти предел функции при х стремящемся к нулю справа. этот предел равен нулю. Следовательно, по определению, х=0 не является вертикальной асимптотой.
Наклонные асимптоты. Если они и есть, то только правые (слева область определения ограниченна 0).
по теореме о существовании наклонных асимптот, если существуют конечные lim f(x)/x =k и lim f(x)-kx =b (х в обоих случаях стремится к плюс бесконечности, раз ищем правую асимптоту) , то y=kx+b будет наклонной асимптотой.
вычисляя lim f(x)/x получаем бесконечность, следовательно, наклонных асимптот нет.
Таким образом, у функции нет асимптот
Ответ будет 3
85% от 20
это 17
20-17=3
Х=32 ответ на уравнение
надо 40 :1,25
Х - нижняя полка, 2х - верхняя.
2х - 8 = х + 8
2х - х = 8 + 8
х = 16 (кн) - на нижней полке
16 * 2 = 32 (кн) - на верхней
<u>Ответ: 16 книг, 32 книги</u>