Пусть скорость первого автомобиля v1, второго v2, время в пути первого после встречи - t1 (1 ч 36 мин = 96 мин), время в пути второго после встречи t2 (2 ч 30 мин = 150 мин), а время их пути до встречи t0. До встречи они двигались друг к другу с общей скоростью v1+v2 и в сумме проехали за время t0 весь путь:
180 = t0*(v1+v2) = v1*t0 + v2*t0
После встречи второй автомобиль проехал ту часть пути, которую первый проехал до встречи, и наоборот:
v1*t0 = v2*t2
v2*t0 = v1*t1
Каждое из этих равенств перегруппируем так, чтобы получилось отношение скоростей v1 и v2:
v1*t0 = v2*t2
v1/v2 = t2/t0
и
v2*t0 = v1*t1
v2/v1 = t1/t0
v1/v2 = t0/t1
Теперь приравниваем отношения скоростей, полученные из первого и второго равенств:
v1/v2 = t2/t0 = t0/t1
t2/t0 = t0/t1
Перегруппировываем:
t0^2 = t1*t2
t0^2 = 96*150 = 14400 = 120^2
t0 = 120 мин
Это время до их встречи. Значит общее время в пути для первого автомобиля составит t0+t1 = 120 + 96 = 216 мин, а для второго t0+t2 = 120 + 150 = 270 мин. Зная общий путь, найдём их скорости:
v1 = 180 / 216 = 5/6 км/мин = 50 км/ч
v2 = 180 / 270 = 2/3 км/мин = 40 км/ч
И что сложного?
1) 1,3x >= 2
x >= 2/1,3 =20/13
2) 2-7x > 0
7x<2
x<2/7
3) 6(y-1,5)-3,4 > 4y - 2,4
6y-9-3,4 > 4y - 2,4
2y- 10 > 0
y > 5
1)48:4*3=36
2)72:12*7=42
3)800:20*9=360
4)140:7*2=40
5)125:5*3=75
6)99:11*3=27
2 1/3 переводим в неправильную дробь. получаем 7/3. обозначим искомое число за х. тогда 7/3х=210. значит х=210 / 7/3=90
Ответ: 90