220т5ц=220500кг
85т=85000кг
9т5ц=9500кг
85000-9500=75500 кг -овес
220500-75500-85000=60000кг=60т- просо
Цифры 2 и 5 могут участвовать как в часах, так и в минутах.
1) Найдем сколько раз могут встречаться в часах цифры 2 и 5.
02 ч 05 ч 12 ч 15 ч 20 ч 21 ч 22 ч 23 ч
Итого 8 вариантов
При этом смена цифр в минутах на табло для каждого варианта будет равно 60 (60 минут в часе).
Значит количество вариантов для часов с цифрами 2 и 5 будет
8*60=480 вариантов
2) А если в разрядах часов нет ни 2 ни 5, то будут годиться только показания минут с 2 или 5. При этом у нас уже учтены варианты с цифрами 2 и 5 в часах.
Значит без этих вариантов для часов у нас остается:
24-8=16 часов без цифр 2 и 5.
Количество минут в сутках с цифрами 2 и 5.
Для начала найдем сколько раз встречаются цифры 2 и 5 в 1 часе.
Минуты за 1 час :
02 мин 05 мин 12 мин 15 мин 20 мин 21 мин 22 мин 23 мин 24 мин 25 мин 26 мин 27 мин 28 мин 29 мин 32 мин 35 мин 42 мин 45 мин
50 мин 51 мин 52 мин 53 мин 54 мин 55 мин 56 мин 57 мин 58 мин 59 мин
Итого 28 вариантов за 1 час
16*28=448 вариантов
480+448=928 комбинаций для электронных часов, где встречаются цифры 2 и 5.
Ответ 928 раз <span>за сутки внаборе цифр на табло этих часов участвуют цифры 2 и 5 или одна из этих цифр</span>
Z = 3x^2 - xy + 2y^2 - 5x - 3y + 4
Необходимое условие экстремума: производные обе равны 0
{ dz/dx = 6x - y - 5 = 0
{ dz/dy = 4y - x - 3 = 0
Умножаем 1 уравнение на 4
{ 24x - 4y - 20 = 0
{ -x + 4y - 3 = 0
Складываем уравнения
23x + 0y - 23 = 0
x = 1
y = 6x - 5 = 6 - 5 = 1
z(1, 1) = 3*1 - 1*1 + 2*1 - 5 - 3 + 4 = 0
Достаточное условие экстремума. Найдем вторые производные.
A = d2z/dx^2 = 6 > 0; B = d2z/dxdy = -1; C = d2z/dy^2 = 4
D = A*C - B^2 = 6 * 4 - (-1) = 25 > 0
Так как D > 0 и A > 0 - это точка минимума.
Если бы было D > 0 и A < 0 - это была бы точка максимума.
Если бы было D < 0 - это вообще не был бы экстремум.
Ответ: M0(1; 1; 0) - точка минимума.
Решение на фотографии
Ответ : -3,68