ab = 3*1+2*(-3)+(-4)*0=-3
Ответ:
Так, мне уже понятно, что ноль в этом году должен быть только один раз или ни одного. То есть рассматриваем годы, начиная с 2011. Давайте посмотрим какой год (хотя-бы один) вообще можно назвать восхитительным по версии автора задачи. Например это может быть год, состоящий из цифр 0, 1, 2, 9, то есть это годы 2019 и 2091, из них можно составить два двузначных числа: 19 и 20. Теперь, когда нам понятно, что нам нужно искать, приступаем к поиску всех таких годов. Нам в этом помогут варианты ответов, будем их перебирать, начиная с большего - с восьми годов, найдем ли мы столько. Два у нас уже есть. Нужно искать двузначные числа из разных десятков, иначе не будут соблюдены все условия. 29 и 30 дадут нам годы: 2039 и 2093. 39 и 40 и последующие такие пары уже нам не подойдут, нам нужна двойка. Следовательно только 4 года можем мы назвать восхитительными: 2019, 2091, 2039, 2093.
Ответ: 4 (вариант В).
Пошаговое объяснение:
Сторона равна 11 см ( корень квадратнай из 121 )
<span> |-3,5|-|2,6| = 3,5 - 2,6 =0,9
|20/21|+|-5/7| = </span>
<span>
|-2,1|x|-3,7| = 2,1 * 3,7 = 7, 77
|-1/16| : |-1 1/4| = </span>
10 * 5 = 50 столько она пробежит за 5 секунд
450 - 50 = 400 - такое расстояние будет через 5 секунд