На рисунке 8.10 AO = OB и DO = OC. Докажите равенство отрезок AD и BC
РЕШЕНИЕ:
• AO = OB - по условию
DO = OC - по условию
угол AOD = угол ВОС - как вертикальные углы
Значит, тр. AOD = тр. ВОС по двум сторонам и углу между ними
• В равных треугольниках соответственно равные элементы: стороны и углы => AD = BC , что и требовалось доказать
Проведем из точки пересечения диагоналей ромба O высоту OE на сторону BC, как показано на рисунке. Рассмотрим прямоугольный треугольник OEC. sinα=OE/OC=2/√5/2=1/√5
cosα=√(1-1/5)=2/√5
tgα=sinα/cosα=1/2
Рассмотрим прямоугольный треугольник BOC. Т.к. tgα=1/2=BO/OC, то BO=1 > BD=2BO=2.
Площадь ромба равна половине произведения его диагоналей
S=1/2BD*AC=1/2*2*4=4
ответ:4
Изобразим схематически условие задачи:
АВ - первая сосна,
CD - вторая сосна,
AD - расстояние между ними.
Если считать, что сосны растут перпендикулярно земле, получаем прямоугольную трапецию с основаниями АВ и CD, в которой большая боковая сторона ВС - искомая величина.
Проведем СН - высоту трапеции.
СН = АD = 20 м, как расстояния между параллельными прямыми,
СН║AD как перпендикуляры к одной прямой, значит AHCD - прямоугольник, ⇒
АН = CD = 12 м
ВН = АВ - АН = 27 - 12 = 15 м
Из прямоугольного треугольника ВСН по теореме Пифагора:
ВС² = ВН² + НС² = 15² + 20² = 225 + 400 = 625
ВС = 25 м
А+В+С+D=360
145+82+C=360
C=360-227
C=133