Скорее всего AD и BC не боковые стороны, а основания трапеции. Тогда:
MN-средняя линия ( АМ=МВ CN=ND)
точки K и P - точки пересечения диагоналей и средней линии
Введем x, отсюда MK:KP:PN=2x:3х:2х
2x+3х+2х=21
7x=21
x=3
MK=3*2=6 см
KP=3*3=9 см
PN=3*2=6 см
Диагональ AC трапеции делит ее на 2 треугольника, в которых средняя линия трапеции является средней линией треугольников ⇒
BC=2*MK=2*6=12 см
AD=2*(KP+PN)=2*(9+6)=2*15=30 см
По заданию хорда равна половине диаметра, то есть равна радиусу.
Если провести радиус из центра окружности во второй конец хорды, то получим равносторонний треугольник со сторонами, равными радиусу.
Угол равен 60 градусов.
Проведем еще одну высоту, получится прямоугольник и 2 равных прямоугольных треугольника, т.к. трапеция равнобедренная; меньшее основание будет равно основанию получившегося прямоугольника; основания прямоугольных треугольников равны 11, у нас имеется сумма одного основания треугольника и прямоугольника, тогда основание прямоугольника равное меньшему основанию трапеции=17-11=6.
Очень плотную атмосферу состоящую в основном из углекислого газаВенера
15.10
• рисунок А
1) На чертеже отмечено, что углы BAD и CDA равны, => угол CDA = 62 градусам
2) т.к. AD||ВС, а углы CDA и BCD - односторонние, используем их свойство:
угол BCD + 62 = 180
угол BCD = 180 - 62 = 118 градусов
• рисунок Б
1) углы CDA и FCB - соответственные, а т.к. AD||BC, => FCB = 70 градусам.
2) т.к. треугольник FCB - равнобедренный, используем их свойство, =>
угол FBC = угол FCB = 70 градусам
• рисунок В
1) треугольник ODA - равнобедренный. Используем свойство:
угол OAD = угол ODA = 65 градусам.
2) т.к. AD||BC, а углы ODA и OCB накрест лежащие, => угол OCB = 65 градусам.
15.11
а) Один угол равен 150 градусам, другой - 30, и за счет того, что прямые параллельны, сравниваем их с другими. 4 угла равно 150, 4 других угла равно 30.
б) Тут нужно составить уравнение:
Пусть один угол = х, тогда другой = х+70:
х + (х + 70) = 180
х = 55
х + 70 = 125
В остальном всё тоже самое, что и в задании А