Эта трапеция - "половинка" правильного шестиугольника, вписанного в окружность. Большее основание является диаметром, остальные стороны равны радиусу, диагонали равны 2R(<span>√3/2) = 4<span>√3; </span></span>
Допустим AB =5 , BC =6 , BM =5 ,( AM =MC , M∈[AC] .
------------------
AC - ?
Продолжаем медиана и на ней откладываем отрезок MD=BE. Соединяем полученную точку с вершинами. Полученный четырехугольник ABCD параллелограмма.
Для параллелограмм верно теорема_сумма квадратов диагоналей равно сумму квадратов сторон .AC²+BD² = 2(AB²+BC²)⇒AC²=2(AB²+BC²) - BD² || BD=2BM=10 ||
AC² =2(5² +6²) -(2*5)²=22.
AC =√22.
ответ: √22.
-----------------------------
Или
Из ΔAMB по теореме косинусов
AB² =AM² +BM² -2AM*BM*cos∠AMB (1)
Аналогично из ΔCMB ,CB² =CM²+BM² -2CM*BM*cos(180° -∠AMB) или
CB² =CM²+BM² +2CM*BM*cos∠AMB (2)
Складывая уравнения (1) и (2) получаем :
AB² +CB²= AM²+CM² +2BM² ;
AB² +CB²= (AC/2)²+(AC/2)² +2BM² ;
AB² +CB²= AC²/2 +2BM² ;
2(AB² +CB²)= AC² +(2BM)² ; * * *AC² + BD² =2(AB² +CB²) || BD=2BM.* *
AC² = 2(AB² +CB²) -(2BM)²
По условию CO=OD,значит CO=OD=5
АО=ОВ => АО = 3 см
Докажем что треугольник AOC равен треугольнику OBD:
угол AOC=углу BOD(как вертикальные углы)
CO=OD и AO=OB(по условию)
значит треугольник AOC равен треугольнику OBD(по двум сторонам и углу между ними)
значит AC=BD(в равных треугольниках против равных углов лежат равные стороны) и если BD=4,то и AC=4
найдем периметр треугольника AOC.
3+5+4=12(см)
Ответ:12 см