Вектор − чисто математическое понятие, которое лишь применяется в физике или других прикладных науках и которое позволяет упростить решение некоторых сложных задач.
Вектор − направленный отрезок прямой.
В курсе элементарной физики приходится оперировать двумя категориями величин − <span>скалярными и векторными</span>.
Скалярными величинами (скалярами) называют величины, характеризующиеся числовым значением и знаком. Скалярами являются длина − l, масса − m, путь − s, время − t, температура − T, электрический заряд − q, энергия − W, координаты и т.д.
К скалярным величинам применяются все алгебраические действия (сложение, вычитание, умножение и т.д.).
Пример 1.
Определить полный заряд системы, состоящий из зарядов, входящих в нее, если q1 = 2 нКл, q2 = −7 нКл, q3 = 3 нКл.
Полный заряд системы
<span>q = q1 + q2 + q3 = (2 − 7 + 3) нКл = −2 нКл = −2 × 10−9 Кл.</span>
Пример 2.
Для квадратного уравнения вида
<span>ax2 + bx + с = 0;</span>
<span>x1,2 = (1/(2a)) × (−b ± √{b2 − 4ac}).</span>
Векторными величинами (векторами) называют величины, для определения которых необходимо указать кроме численного значения так же и направление. Векторы − скорость v, сила F, импульс p, напряженность электрического поля E, магнитная индукция B и др.
Численное значение вектора (модуль) обозначают буквой без символа вектора или заключают вектор между вертикальными черточками r = |r|.
Графически вектор изображают стрелкой (рис. 1),
Первый закон Ньютона утверждает (это с той или иной степенью точности можно проверить на опыте) о том, что инерциальные системы существуют в действительности. Этот закон механики ставит в особое, привилегированное положение инерциальные системы отсчета.
Системы отсчета, в которых выполняется первый закон Ньютона, называют инерциальными.
Или
Инерциальные системы отсчета – это системы, относительно которых материальная точка при отсутствии на нее внешних воздействий или их взаимной компенсации покоится или движется равномерно и прямолинейно.
Инерциальных систем существует бесконечное множество. Система от-счета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, – тоже инерциальная система (приближенно), как и система, связанная с Землей. Все инерциальные системы отсчета образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно. Ускорения какого-либо тела в разных инерциальных системах одинаковы.
Как установить, что данная система отсчета является инерциальной? Это можно сделать только опытным путем. Наблюдения показывают, что с очень высокой степенью точности можно считать инерциальной системой отсчета гелиоцентрическую систему, у которой начало координат связано с Солнцем, а оси направлены на определенные «неподвижные» звезды. Системы отсчета, жестко связанные с поверхностью Земли, строго говоря, не являются инерциальными, так как Земля движется по орбите вокруг Солнца и при этом вращается вокруг своей оси. Однако при описании движений, не имеющих глобального (т.е. всемирного) масштаба, системы отсчета, связанные с Землей, можно с достаточной точностью считать инерциальными.
С гораздо большей точностью можно считать инерциальной систему отсчета, в которой начало координат совмещено с центром Солнца, а координатные оси направлены к неподвижным звездам. Эту систему отсчета называют гелиоцентрической.
Инерциальными являются системы отсчета, которые движутся равномерно и прямолинейно относительно какой-либо инерциальной системы отсчета.
Галилей установил, что никакими механическими опытами, поставлен-ными внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется равномерно и прямолинейно. Это утверждение носит название принципа относительности Галилея или механического принципа относительности.
Этот принцип был впоследствии развит А. Эйнштейном и является одним из постулатов специальной теории относительности. Инерциальные системы отсчета играют в физике исключительно важную роль, так как, согласно принципу относительности Эйнштейна, математическое выражение любою закона физики имеет одинаковый вид в каждой инерциальной системе отсчета. В дальнейшем мы будем пользоваться только инерциальными системами (не упоминая об этом каждый раз).
Системы отсчета, в которых первый закон Ньютона не выполняется, называют неинерциальными.
К таким системам относится любая система отсчета, движущаяся с ускорением относительно инерциальной системы отсчета.
В механике Ньютона законы взаимодействия тел формулируются для класса инерциальных систем отсчета.
Примером механического эксперимента, в котором проявляется неинерциальность системы, связанной с Землей, служит поведение маятника Фуко. Так называется массивный шар, подвешенный на достаточно длинной нити и совершающий малые колебания около положения равновесия. Если бы система, связанная с Землей, была инерциальной, плоскость качаний маятника Фуко оставалась бы неизменной относительно Земли. На самом деле плоскость качаний маятника вследствие вращения Земли поворачивается, и проекция траектории маятника на поверхность Земли имеет вид розетки
О том, что телу свойственно сохранять не любое движение, а именно прямолинейное, свидетельствует, например, следующий опыт Шарик, двигавшийся прямолинейно по плоской горизонтальной поверхности, сталкиваясь с преградой, имеющей криволинейную форму, под действием этой преграды вынужден двигаться по дуге. Однако когда шарик доходит до края преграды, он перестает двигаться криволинейно и вновь начинает двигаться по прямой. Обобщая результаты упомянутых (и аналогичных им) наблюдений, можно сделать вывод, что если на данное тело не действуют другие тела или их действия взаимно компенсируются, это тело покоится или же скорость его движения остается неизменной относительно системы отсчета, неподвижно связанной с поверхностью Земли.
Велосипед, удочка, каноэ, палки такие длиннющие в гимнастике))))на которые опираются и прыгают в верх))))я не знаю как они называются!
Если тело плавает, то сила тяжести и сила Архимеда равны.
Если оно опущено в жидкость и подвешено, то все силы уравновешены.
m*g=T+Fa где Т - реакция подвеса (сила натяжения)
Если тело тонет, то из силы тяжести вычитаем силу Архимеда.
При равномерном погружении m*g=Fa+Fc Fc - сила сопротивления
При равноускоренном погружении mg-(Fa+Fc)=m*a а - ускорение
При всплытии всё наоборот (Fa>m*g)
===========================