966*1/3=322 яблони966-322=644 остальные деревья644*1/4=161 груша
<span>Вокруг конуса описана треугольная пирамида, площадь основания которой равна 50√3, а периметр основания - 50. Определите объем V этого конуса, если длина его образующей равна 4. В ответе запишите значение V\π.</span>
V конуса=(1/3)Sосн*H
Sосн=πR²
радиус вписанной окружности R=S/p
p=(1/2)PΔ, p=50/2=25
R=50√3/25, R=2√3
прямоугольный треугольник:
гипотенуза - образующая конуса L=4
катет - радиус основания конуса R=2√3
катет - высота конуса Н, найти
по теореме Пифагора:
L²=Н²+R²
4²=H²+(2√3)², H²=16-12, H=2
V=(1/3)π(2√3)² *2=(1/3)*π*24
V=8π
<u>ответ: V/π=8</u>
Пусть боковая сторона - х, тогда основание х+8
Р=х+х+8+х=44
3х=36
х=12-боковая сторона
12+8=20 - основание
Стороны треугольника 12, 12, 20
1) 84×7=588-7 роз
2) 84÷2=42-одна гвоздика
3) 42×5=210- 5 гвоздик
4) 588-210=378
Ответ: На 378 7 роз стоят больше 5 гвоздик.
"если укладывать в ряд по 10 плиток, то для квадратной площадки плиток не хватает"
Значит плиток меньше, чем 100 штук.
При укладывании по 8 плиток в неполном ряду может быть только 7 плиток, т.к. при укладывании по 9 плиток получается неполный ряд, в котором на 6 плиток меньше. То есть 1 плитка.
Нужно найти такое число меньше 100, которое при делении на 8 даёт остаток 7, а при делении на 9 - остаток 1. Это число 55.
55:8 = 6 (ост. 7)
55:9 = 6 (ост. 1)
Ответ: 55 плиток