Рассмотрим ∆ABE.
∠ABE = 90° - 45° = 45° => ∆ABE - равнобедренный. Тогда АЕ = ЕВ. По теореме Пифагора:
АВ² = АЕ² + ЕВ²
64 = 2АЕ²
АЕ = √32 = 4√2.
Рассмотрим ∆BDE.
∠EBD = 30° => ED = 1/2BD, т.к. напротив угла в 30° лежит катет, равный половине гипотенузы.
По теореме Пифагора:
EB² = BD² - ED²
32 = 4ED² - ED²
32 = 3ED²
ED² = 32/3
ED = 4√2/3.
AD = AE + ED = 4√2 + 4√2/3 = 12√2/3 + 4√2/3 = 16√2/3.
Ответ: 16√2/3.
1) Находим площадь ромба АВСД: S=d1*d2/2=10*24/2=120(см кв)2)Находим АВ-сторону ромба.Для этого рассмотрим прямоугольный треугольник АОВ(О-точка пересечения диагоналей). АО=10:2=5(см), ВО=24:2=12(см).По теореме Пифагора АВ=sqrt{5^2+12^2}=sqrt{169}=13(см)3)Находим расстояние от точки О-точки пересечения диагоналей ромба до стороны ромба АВ. Оно равно высоте OH треугольника АОВ.Площадь треугольника АОВ равна 1/4 площади ромба, т.е. 120:4=30(см кв).S(AOB)=AB*OH/213*OH/2=3013*OH=60OH=60/13<span>OH=4 8/13 (см)</span>
Ответ:
<u><em>(см. объяснение)</em></u>
Объяснение:
Координаты центра.
Радиус отрицательным не бывает.
Точка А принадлежит.
Точка В принадлежит.
Точка С не принадлежит.
Уравнение прямой: