у= х²-2х-3
1. график парабола, ветви вверх
2. чертим систему координат, отмечаем стрелками положительное направление: вправо и вверх; подписываем оси : вправо - х, вверх -у; отмечаем начало координат - точку О(0; 0) и единичные отрезки по кадой оси в 1 клетку.
3. найдем вершину параболы
х(в) = -b/2a х(в) = 2/2 = 1
у(в) = 1-2-3= -4
В(1;-4)
4) найдем нули функции:
х²-2х-3=0
Д = 4+12=16=4²
х(1) = (2-4)/2 = -1/2
х(2) = (2+4) / 2 = 3
(-1/2; 0) и (3; 0) - нули функции
5) Отметим в системе координат вершину и нули функции
6) Проведём относительно вершины "новую" систему координат и в ней построим график функции у=х². Этот график обязательно пройдет через точки (-1/2; 0) и (3; 0).
7) подпишем график у=х²-2х-3.
Теперь ответим по графику на вопросы:
а) функция возраст при х∈(1;+∞)
функция убывает при х∈(-∞; 1)
б) у(наим) = -4 и достигается в точке х=1
в) у<0 при х∈(-1/2; 3)
Опустим высоту BC (см.рис.). Треугольник ABC - прямоугольный, т.к. BC - высота, AB = 4 см, угол A = 60 градусов. Причём AC - радиус вписанной в основание окружности, т.к. основание - правильный треугольник, а пирамида правильная (вершина проецируется в центр основания).
Из тр-ка ABC по определениям синуса и косинуса
Площадь основания
Найдём объём пирамиды:
<u />
Не решала пример номер 1. Т к, я знаю как решить, но in ??? Что значит? Все остальное в фото, вместе с решением
48/8=6
56/8=7
Ответ:7
Сорок восемь разделить на 8 будет 6
Пятьдесят шесть разделить на восемь будет семь