Решение:
Рассмотрим два возможных случая:
1) Если 3а - 2 = 0, т.е. 3а = 2, а = 2/3, то
0•х^2 - (4-6• 2/3)•х+2/3+2=0
0•х = - 2 2/3
Линейное уравнение корней не имеет.
2) Если 3а - 2 не равно 0, а не равно 2/3, то
Квадратное уравнение имеет корни в том случае, когда его дискриминант неотрицательный.
D = b^2 -4ac
D = (4 - 6a )^2 -4• (3a - 2)•(a + 2) = 16 - 48a + 36a^2 - 12a^2 + 8a - 24a + 16 = 24a^2 - 64а +32 = 8•(3a^2 - 8а + 4);
D ≥0,
D1 = 64 - 48 = 16
a1 = (8 + 4):6 = 2
a2 = (8 - 4) : 6 = 2/3
24( a - 2)(a -2/3) ≥0
___+___(2/3)____-___[2]___+___а
Получили, что уравнение
(3а-2)х^2 - (4-6а)х + а + 2 = 0 имеет действительные корни при всех значениях а, принадлежащих промежуткам:
(- ∞; 2/3) U [2; + ∞)
Данное выражение числитель и знаменвтель отдельно разделите на соsa получится (3+5tg)/(2-tg) следует tg=1 , (3+5)/(2-1)=8
{ 3x1 - 2x2 + 5x3 + x4 = 2
{ 6x1 - 4x2 + 4x3 + 3x4 = 3
{ 9x1 - 6x2 + 3x3 + 2x4 = 4
Умножаем 1 уравнение на -2 и складываем со 2 уравнением
Умножаем 1 уравнение на -3 и складываем с 3 уравнением
{ 3x1 - 2x2 + 5x3 + x4 = 2
{ 0x1 + 0x2 -6x3 + x4 = -1
{ 0x1 + 0x2 -12x3 - x4 = -2
Умножаем 2 уравнение на -2 и складываем с 3 уравнением
{ 3x1 - 2x2 + 5x3 + x4 = 2
{ 0x1 + 0x2 -6x3 + x4 = -1
{ 0x1 + 0x2 + 0x3 - 3x4 = 0
Из 3 уравнения x4 = 0, подставляем во 2 уравнение:
-6x3 + 0 = -1; x3 = 1/6
Подставляем в 1 уравнение
{ 3x1 - 2x2 + 5/6 + 0 = 2
3x1 - 2x2 = 2 - 5/6 = 7/6
Общее решение:
x1 может быть любым
x2 = (3x1 - 7/6) / 2 = (18x1 - 7)/12
x3 = 1/6
x4 = 0
Чем отличается общее решение от фундаментального, я не знаю.
Частное решение:
x1 = 1; x2 = 11/12; x3 = 1/16; x4 = 0