Параллелепипед (греч. parallelepípedon, от parállelos — параллельный и epípedon — плоскость) , шестигранник, противоположные грани которого попарно параллельны. П. имеет 8 вершин, 12 рёбер; его грани представляют собой попарно равные параллелограммы. П. называется прямым, если его боковые ребра перпендикулярны к плоскости основания (в этом случае 4 боковые грани — прямоугольники) ; прямоугольным, если этот П. прямой и основанием служит прямоугольник (следовательно, 6 граней — прямоугольники) ; П. , все грани которого квадраты, называется кубом. Объём П. равен произведению площади его основания на высоту. <span>Параллелепипед - призма, основанием которой служит параллелограмм, или (равносильно) многогранник, у которого шесть граней и каждая из них параллелограмм. Доказательство того, что диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам. </span><span>Параллелепипедом называется призма, основаниями которой служат параллелограммы. При этом все грани будут параллелограммами. </span>Вот как-то так :)
Параллелепипед (от греч. παράλλος — параллельный и греч. επιπεδον — плоскость) — призма, основанием которой служит параллелограмм.
[править] Типы параллелепипедов Параллелепипеды, как и призмы, могут быть прямыми и наклонными.
Прямым параллелепипедом называется прямая призма, основание которой — параллелограмм.
Прямой параллелепипед, основанием которого служит прямоугольник, называют прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани — прямоугольники. Моделями прямоугольного параллелепипеда служат классная комната, кирпич, спичечная коробка.
Длины трёх рёбер прямоугольного параллелепипеда, имеющих общий конец, называют его измерениями. Например, имеются спичечные коробки с измерениями 15, 35, 50 мм Куб — прямоугольный параллелепипед с равными измерениями. Все шесть граней куба — равные квадраты.
[править] Свойства Параллелепипед симметричен относительно середины его диагонали, соединяющей противоположные вершины. Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам. Противолежащие грани параллелепипеда параллельны и равны. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений. Аффинное преобразование всегда переводит параллелепипед в параллелепипед. Для любого параллелепипеда существует аффинное преобразование, которое преобразует его в куб.