2х+7х=180
9х=180
х=20
угол авс =2*20=40
угол DBC=7*20=140
угол KBC=140/2=70
угол KBA=40+70=110
ответ: 110
1) они пересекаются2) 2 угла по 134 градуса и 2 угла по 46 градусов3) 100 градусов5) Угол 2 = 50 градусов, угол 3 = 40, угол 4 = 140.6) 4 сантиметра7) АОС - 160, ВОD - 140.
Если забыть про условие задачи и поступить так - провести через выбранную точку Р на AD плоскость II DBC. Точки пересечения АВ и АС с этой плоскостью обозначим M1 и N1. Легко показать, что прямая РN1 II DC (если бы это было не так, то у параллельных по построению плоскостей DBC и PM1N1 была бы общая точка), и отношение <span>AN1 : N1C = AP : PD по свойству параллельных прямых в плоскости (это свойство - что параллельные прямые отсекают пропорциональные отрезки у любых секущих). В плоскости ADC через точку Р можно провести ТОЛЬКО одну прямую II DC, поэтому прямая PN1 совпадает с прямой PN (точка N задана в задаче). Точно так же доказывается, что PM1 II DB и совпадает с прямой РМ (точка М задана в задаче). </span>
<span>Итак, получилось, что плоскость, параллельная DBC, проходящая через точку P, содержит точки M и N (или можно сказать - две проходящие через Р несовпадающие прямые MP и NP). Поскольку через 3 различных точки (или можно сказать - через 2 несовпадающие пересекающиеся прямые) можно провести ТОЛЬКО одну плоскость, то утверждение задачи доказано.</span>
Рассмотрим треугольник ABC и треугольник MBK. Во-первых AB/MB=2/1. Во-вторых CB/KB как 2/1. т.е. коэффициенты подобия равны. И в третьих угол B общий. Благодаря утверждениям выше мы можем утверждать, что эти два треугольника подобные. Коэффициент подобия равен 2. А мы знаем, что Pabc/Pmbk=k. Подставляем сюда, что знаем: x/22=2/1. произведение средних членов равно произведению крайних. Отсюда x=44 см.
Ответ: Pabc= 44 см.
Обозначим угол 1 за x, 2 — y, 3 — z. Заметим, что y = z как вертикальные углы.
x + y = 180° и x/y = 2/7, откуда 7x = 2y или y = 7x/2. Тогда x + 7x/2 = 9x/2 =180°, 9x = 360°, x = 40°. Получаем, что z = y = 7x/2 = 7(20) = 140°.
Ответ: 140°.