<span>3(8а-4)+6а =24а-12+6а=30а-12
11с+5(8-с)=11с+40-5с=6с+40
2(у-1)-2у+12=2у-2-2у+12=10
16+3(2-3у)+8у=16+6-9у+8у=22-у
7р-2(3р-1)=7р-6р+2=р+2
-4(3а+2)+8=-12а-8+8=-12а
3-17а-11(2а-3)=3-17а-22а+33=36-39а
15-5(1-а)-6а =15-5+5а-6а=10-а</span>
Вот решение)ты что то там не доделала в двух последних(е,з)
Log8(5x-20)=log8(7)+log8(5)=C=Const
в предположении, что 8 - основание логарифма
и по определению логарифма:
8 в степени С = Const = С1=5х-20
откуда
х=(С1+20)/5
===
Справка из инета -
<span>Согласно общепринятому определению, Логарифм числа N по основанию а, называется - показатель степени - m, в которую следует возвести число а (основание Л.), чтобы получить N; обозначается logaN. Итак, m = logaN, если ам = N. Например, log10 100 = 2; log2 1/32 = - 5; loga 1 = 0, т. к. 100 = 102, 1/32 = 2-5, 1 = a0. При отрицательных а бесконечно много положительных чисел не имело бы действительных логарифмов, поэтому берётся а > 0 и а ¹ 1. Из свойств логарифмической функции вытекает, что каждому положительному числу соответствует при данном основании единств. действительный Л. (логарифмы отрицательных чисел являются комплексными числами). Основные свойства Л.: loga(MN) = logaM + logaN; logaM/N = logaM - logaN; logaNk = k logaN;loga logaNпозволяют сводить умножение и деление чисел к сложению и вычитанию их Л., а возведение в степень и извлечение корня - к умножению и делению Л. на показатель степени или корня, т. е. к более простым действиям.Когда основание а фиксировано, говорят об определённой системе Л. В соответствии с десятичным характером нашего счёта наиболее употребительны десятичные Л. (а = 10), обозначаемые lg N. Для рациональных чисел, отличных от 10k с целым k, десятичные Л. суть трансцендентные числа, которые приближённо выражают в десятичных дробях. Целую часть десятичного Л. наз. характеристикой, дробную - мантиссой. Так как lg(10kN) = k + lgN, то десятичные Л. чисел, отличающихся множителем 10k, имеют одинаковые мантиссы и различаются лишь характеристиками. Это свойство лежит в основе построения таблиц Л., которые содержат лишь мантиссы Л. целых чисел (см. Логарифмические таблицы (см. Логарифмические таблицы)).Большое значение имеют также натуральные Л., основанием которых служит трансцендентное число e = 2,71828...; их обозначают lnN. Переход (см. Переход) от одного основания Л. к другому совершается по формуле logbN = logaN/logab, множитель 1/logab называется модулем перехода (перевода) от основания а к основанию b. Для перехода от натуральных Л. к десятичным или обратно имеемlnN = IgN/lge, lgN = InN/ln10;1/lge = 2,30258; 1/ln10 = 0,43429...</span>
Ответ:
Объяснение:
f(x)=x^2+1
a)f(0)=0+1=1 , f(0)=1
b)f(-2)=(-2)²+1=4+1=5 , f(-2)=5