<span>ABCD -равнобедренная трапеция, угол B=60 градусов,AB=4,BC=5,<span>найти площадь ABCD</span></span>
Треугольник АВС, уголС=90, tgA=0,75, СР-высота на АВ, , из точки О проводим перпендикуляры ОН и ОК в точки касания на РС и АР, ОК=ОН радиус вписанной окружности в АРС=4, КРНО-квадрат КР=РН=ОН=ОК=4, АК=х, АР=х+4, СР=АР*tgA=(х+4)*0,75=0,75х+3, sinA=tgA/корень(1+tgA в квадрате)=0,75/корень(1+0,5625)=0,75/1,25=0,6, АС=СР/sinA=(0,75х+3)/0,6=1,25х+5, радиус=(АР+СР-АС)/2=(х+4+0,75х+3-1,25х-5)/2=(0,5х+2)/2, 4=(0,5х+2)2, 8=0,5х+2, х=12=АК, АР=4+12=16, СР=0,75*12+3=12, АС=1,25*12+5=20, ВС=АС*tgA=20*0,75=15, АВ=ВС/sinA=15/0,6=25, радиус вписанной в АВС=(АС+ВС-АВ)/2=(20+15-25)/2=5
1) Каждая грань этой призмы - параллелограмм. Чтобы найти площадь боковой поверхности, надо найти площадь каждого параллелограмма и сложить. Площадь параллелограмма находят по формуле S=а ·h (а - основание, h - высота)
2) С1В1ВС: в этом параллелограмме основание ВВ1, а высота KN. (по условию KN⊥BB1) Тогда S(С1В1ВС)=12·4 =48
3) АА1В1В: в этом параллелограмме основание ВВ1, а высота МN. (по условию МN⊥BB1) Тогда S(АА1В1В)=12·3 = 36
Остался параллелограмм АА1С1С.
4) По условию прямая ВВ1 перпендикулярна двум пересекающимся прямым в плоскости MNK, значит, она перпендикулярна всей плоскости MNK, а значит, каждой прямой в этой плоскости. В частности, ВВ1⊥МК. 5) Так как прямая АА1 параллельна ВВ1, то АА1⊥МК. Значит, в параллелограмме АА1С1С основание АА1, а высота МК. Тогда S(АА1С1С)=АА1·МК
6) МК найдем из прямоугольного треугольника MNK по теореме Пифагора (MK=5)
7) S(АА1С1С)=12·5=60
8) S(бок)=48+36+60=144
Ответ: 144
Aob прям угл oab 30 по сумме острых углов в прям тр . против угла в 30 гр лежит катет равный половине гипотенузы