ОДЗ n ∈ Z
cos(π*t2)<>0
t^2<>n+1/2
cos(π*t)<>0
t<>n+1/2
tg(π*t)=2tg(π*t^2)/(1-tg^2(π*t^2))
К ОДЗ добавилось
t^2<>n+1/4
t^2<>n-1/4
tg(π*t)=tg(2π*t^2)tg(2π*t^2)-tg(π*t)=0sin(2π*t^2-π*t)/cos(2π*t^2)/cos(π*t)=0sin(2π*t^2-π*t)=0
ОДЗ не больше ОДЗ исходного уравнения.2π*t^2-π*t=π*m m ∈ Z
2t^2-t-m=0
Суммируем ОДЗ t<>n+1/2
4t<>4n+2
(2t)^2<>4n^2+4n+1
t^2<>n+1/4
(2t)^2<>4n^2+4n+1
Cовпадает с первым.
t^2<>n+2/4
t^2<>n+3/4
t1=0
t2= √(1+8m)/4 + 1/4
1+8m>=0 m ∈ N
t3= -√(1+8m)/4 + 1/4
1+8m>=0 m ∈ N
первое условие по ОДЗ√(1+8m)+1<>4n+2
m<>(16n2+1+8n-1)/8
m<>n(2n+1) n ∈ N для t2
1-√(1+8m)<>4n+2
m<>(16n2+1-8n-1)/8
m<>n(2n-1) n ∈ N для t3
Последние два условия√(1+8m) должен быть целым - иначе (1+√(1+8m))^2 целым не будет иррациональность не уйдет.
1+8m=l^2
n^2/4 - если целое при делении на 4 в остатке дает только 0 или 1.
Эти случаи ограничений не дают.
Ответ выделен жирным.
Ответ:
0;98
Объяснение:
и всё всегда имеют один корень
Первое:
=2*2*2
Второе:
Во первых здесь легче вначале упростить:
5*8+5*50 = 40+250= 290
3)
x= 2
4) При k=6,
5)
(1)
- по правилу .
(2)
- тоже.
(3)
6) Тоже по правилу, получаем:
7) Ответ б.
8) Ответ б.