Sin2x·cos2x=(2·sin2x·cos2x)/2=(sin4x)/2
↓
y=(sin4x)/2 + 2
Множество значений sinx по определению: [-1;1]
-1≤sin4x≤1 |÷2
-0.5 ≤ (sin4x)/2 ≤ 0.5 |+2
1.5 ≤ (sin4x)/2 + 2 ≤ 2.5
Ответ: y∈[1.5;2.5]
Подобные последовательности имеют один и тот же вид, в нашем случае
Ответ:........................