sin 2x = 2 sinx * cos x
выносим из числителя 2 sinx. lim(x->0) 2 sinx/ х = 2
осталось вычислить lim(x->0) [cos x - 1 ] / ln cos(5x) неопределенность 0 на 0.
Проще всего по Лопиталю - вычислить производные числителя и знаменателя
Без Лопиталя
cos x -1 = - 2 sin^2 (x/2)
ln cos(5x) = ln [1+ ( cos 5x - 1) ] = ln [ 1- 2 sin^2 (5x/2) ]
---> - 2 sin^2 (5x/2)
после подстановки имеем
lim(x->0) { - 2 sin^2 (x/2) } / { - 2 sin^2 (5x/2) } = lim(x->0) { x^2/4 * [ sin^2 (x/2) / (x/2)^2} / { 25 x^2/4 * [sin^2 (5x/2)/(5x/2)^2 }=
= lim(x->0) { x^2 / 25 x^2 } =1/25
[ sin^2 (x/2) / (x/2)^2}=1 [sin^2 (5x/2)/(5x/2)^2 =1
1+ (cos^4t+sin^2tcos^2t)/sin^2t=1/sin^2t 1+ cos^2t(cos^2t+sin^2t)/sin^2t=1/sin^2t 1+ cos^2t/sin^2t=1/sin^2t (cos^2t+sin^2t)/sin^2t =1/sin^2t 1/sin^2t =1/sin^2t 1=1 тождество доказано.
1)y=98x и y=-102х-3
98x=-102x-3
98x+102x=-3
200x=-3
x=-3/200 y=98*(-3/200)=-294/200=-1 94/200= - 1 47/100
(-0,015;-1,47)
2)у=-3 у=36х+1
-3=36x+1
-36x=4
x=-4/36
x=-1/9 (-1/9;-3)
Первый - простая прямая, строится по двум точкам, график правее х=1 включительно.
Второй - парабола смещенная по оси у на единицу вниз. График левее х=1, не включая, точка выколота.