Ответ:
2007
Пошаговое объяснение:
Пусть у Васи х марок.
Согласно условию х – 5 делится на 7, на 11 и на 13.
Следовательно, поскольку 7,11 и 13 – простые числа,
то х – 5 делится на их произведение, т. е. на 7 • 11 • 13 = 1001.
Поэтому х – 5 = 1001k для некоторого натурального k, откуда х = 1001k +5 .
Далее, согласно условию х – 6 делится на 23.
Поэтому х – 6 = 23m для некоторого натурального m.
В результате, получим 1001k – 1 =23m.
Остается только найти натуральные k и m, удовлетворяющие этому равенству.
При этом, поскольку согласно условию
х/7<1000 и, значит, х<7000,
то достаточно рассмотреть k = 1,2,..., 6.
Нетрудно убедиться, что только при k = 2
из уравнения получится натуральное значение m = 87.
Поэтому находим единственное значение х = 1001•2 + 5 = 2007.