В 1км - 1000м. Следовательно, 3000см- это 3км. 0,3км - это 300м. 3км > 0.3км. Значит, 0,3км < 3000см.
Примем весь объем работы за 1.
Скорость первой бригады - х, скорость второй бригады у.
Тогда за 3,5 часа первая бригада сделала 3,5 х работы.
За 6 часов вторая бригада сделала 6у работы.
Все это равно всему объему работы, то ест 1.
составим первое уравнение.
3,5 х + 6у = 1. (1)
Второе.
По условию весь объем работ вторая бригада выполняла бы на 5 часов больше, чем первая.
поэтому вотрое уравнение t2 - t1 = 5;
1/y - 1/x = 5;
x - y = 5xy; (2)
Получили 2 уравнения с 2 неизвестными.
Выразим y через x во втором уравнении.
x = 5xy + y;
x = y(5x + 1) ;
y = x /(5x+1);
Подставим в первое уравнение и решим квадратное уравнение:
3,5 x + 6x/(5x+1) = 1;
3,5x *(5x+1) + 6x = 5x + 1;
17,5 x^2 + 3,5x + 6x - 5x - 1 = 0;
17,5 x^2 + 4,5 x - 1 = 0; /*2;
35x^2 + 9x - 2 = 0;
D = 81 - 4*35*(-2) = 81 + 280 = 361= 19^2;
x1 = (-9+19) / 70 = 1/7.
x2= (-9 - 19) /70 = - 2/7 < 0.
Найдем у при х = 1/7.
y = 1/7 : (5*1/7 +1) = 1/7 : 12/7 = 1/7 * 7/12 = 1/12.
Итак, скорость первой бригады равна 1/7. и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/7 = 7 дней.
Скорость второй бригады равна 1/12 и и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/12 = 12 дней.
Ответ 7 дней для 1 бригады и 12 дней для второй бригады.
12 можно было бы найти проще 5+7 = 12
Г)
(х-1)²=1-2(х+3)
х²-2х+1=1-2х-6
х²-2х+2х=-5-1
х²=-6 нет решений
д
(2х-1)(х+5)=4(х-1,25)
2х²+10х-х-5=4х-5
2х²+9х-4х=-5+5
2х²+5х=0
х(2х+5)=0
х=0 и 2х+5=0
2х=-5
х=-5/2
х=-2,5
е)
3(х+2)=х²-2(3-1,5х)
3х+6=х²-6+3х
3х-х²-3х=-6-6
-х²=-12
х²=12
х=√12
х=√4*3
х=2√3
ж)
начало спишите
умножим все на 6
3(у²-5у+1)-2(у²-3)=3*3
3у²-15у+3-2у²+6=9
у²-15у+9=9
у²-15у=9-9
у²-15у=0
у(у-15)=0
у=0 или у-15=0
у=15
"""""""""""""""""""""""""""""""""""""