Так как. АД-медина, то т. Д (х; у) -середина ВС
Значит, х=(х1+х2)/2
у=(у1+у2)/2
В (х1;у1), С (х2;у2), Д (-2;-4)
Соs(АД АС) =(вектор АД*на вектор АС) /|АД|*|АС|
(дальше это векторы)
АД (-2-0;-4-(-4))
АД (-2;0)
АС (-1-0;-3-(-4))
АС (-1;1)
АД*АС=-2*(-1)+0*1=2
|АД|=2;|АС|=корень из 2
Соs(АД АС) =2/(2*корень из 2)=корень из 2/2
<span>Значит, угол равен 45 градусов </span>
Из точки, лежащей вне окружности, можно провести к ней не более двух касательных.
Дано:
- окружность с центром О и R = 8 см,
- хорда АВ = 9 см,
- <span>точка С такая,что AC:BC=1:4.
Находим расстояние ОД от центра окружности до хорды АВ (точка Д - середина АВ).
ОД = </span>√(R² - (AB/2)²) = √(64 - 4.5²) = √(64 - (9/2)² = √(175/4) = 5√7/2 см.
Обозначим СА = х.
Из условия СА/СВ = 1/4 находим:
х/(х + 9) = 1/4,
4х = х + 9,
3х = 9,
х = 9/3 = 3 см.
<span>Длина отрезка СД равна:
СД = 4,5 + 3 = 7,5 см.
Тогда искомое расстояние СО равно:
СО = </span>√(СД² + ОД²) = √((225/4) + (175/4)) = √(400/4) = 10 см.<span>
</span>