<span>(tg(п+a)+1)(-ctga+1)/(-tga+1)(ctga+1)=(tga+1)(-ctga+1)(-tga+1)(ctga+1)=(-tga*ctga+tga-ctga+1)/(-tgactga-tga+ctga+1)=(tga-ctga)/(ctga-tga)=-(ctga-tga)/(ctga-tga)=-1</span>
1.
р=1/6 - вероятность выпадения шестерки;
q=1-p=1-(1/6)=5/6 - вероятность невыпадения шестерки.
Р=(5/6)·(5/6)=25/36.
2. Решение неравенства х²-2х≤0: отрезок [0;2].
Решение неравенства | x - 2 |≥ 1: (-∞;1]U[3;+∞)
[0;1] является решением и первого и второго неравенства одновременно.
р=1/2
Применяем определение геометрической вероятности и дели длину отрезка [0;1] на длину отрезка [0;2].
<span>2,5x^2-x+1=0
D = 1^2 - 4 * 2,5 * 1 = 1 - 10 = -9<0
уравнение не имеет корней</span>
<em>А) Эта вероятность равна произведению вероятности вытащить в первой попытке 1 белый шар (всего их 3) из 12 и во второй попытке 1 белый шар (их осталось 2) из 11 1/4 </em><span><em>2/11=2/44 </em>
<em>Б) ) Эта вероятность равна произведению вероятности вытащить в первой попытке 1 чёрный шар (всего их 9) из 12 и во второй попытке 1 чёрный шар (их осталось 8) из 11 3/4 </em></span><span><em>8/11=24/44 </em>
<em>В) Эта вероятность равна сумме двух вероятностей: Р1 - вероятность вытащить в первой попытке 1 белый шар (всего их 3) из 12 и во второй попытке 1 чёрный шар (их по прежнему 9) из 11 1/4 </em></span><span><em>9/11=9/44 и Р2 - вероятность вытащить в первой попытке 1 чёрный шар (всего их 9) из 12 и во второй попытке 1 белый шар (их по прежнему 3) из 11 3/4 </em></span><span><em>3/11=9/44 Вероятность вытащить два шара разного цвета равна 9/44+9/44=18/44 Обратите внимание, что вероятность всех трёх событий (2 белых или 2 черных или 2 разноцветных) в сумме составляет 1.</em></span>