Радиус шара R = 4 см
Объём шара
см³
Площадь поверхности шара
S = 4πR² = 4π*4² = 64π см²
Найдем ∠ВКМ. Он смежен с ∠АКВ, который равен 130°. Найдем ∠ВКМ:
180-130=50=∠ВКМ(по св-ву смежных углов)
Докажем, что ΔАВК=ΔВМС, чтобы в последствии доказать равенство углов ∠ВКМ и ∠ВМК:
1.АВ=ВС(по усл.)⇒ΔАВС - равнобедренный(по опр.)
2.АК=МС(по усл.)
3.∠ВАК=∠ВСМ(по св-ву равноб.Δ)
⇒ ΔАВК=ΔВМС(по 2м сторонам и углу между ними)⇒ВК=ВМ(как соответственные элементы в равных Δ)
⇒ΔВКМ - равнобедр.(по опр.)⇒∠ВКМ=∠ВМК=50(по св-ву равнобедр.Δ)
⇒ΔКВМ - равнобедренный(по опр.)
9383847483/№03+0(+30№+3№?
Решение на рисунке в приложении.
Средняя линия треугольника - половина основания.
Проведем из С высоту h
h^2=25-21=4
h=2 (По теореме Пифагора)
sinA=2\5