Во многих исследованиях часто имеют дело с разнообразными совокупностями вещей и явлений, которые по одним признакам представляют собой единое целое, а по другим подразделяются на отдельные группы. Такие совокупности рассматривались ранее.
Так, в примере рассмотренном в разделе Первичная обработка результатов измерений ученики 3-го класса - это определенная совокупность элементов (учеников), представляющих собой единое целое, поскольку элементы (ученики), которые ее составляют, объединены определенным признаком - все они учатся в 3-м классе. В то же время они подразделяются на отдельные группы по другим признакам: полу, скорости чтения, успешности обучения и т. п.
Участники областной олимпиады по математике образуют единое целое. В то же время они могут быть разделены на группы: по регионам, где они учатся; по успехам выступления на областной олимпиаде; по классам, в которых они учатся; по характеру математических способностей и т. п.
Совокупность, состоящая из однородных элементов, имеющих качественную общность, будем называть статистической совокупностью. Элементы, из которых состоит данная совокупность, называют ее членами. Количество элементов в совокупности называют его объемом. Объем совокупности будем обозначать через n.
Признак, по которому совокупность подразделяют на группы называют аргументом. Признак (аргумент) будем обозначать прописными латинскими буквами X, Y, Z, ... . Отдельные числовые значения аргумента называют его вариантами и обозначают через x1, x2, ..., <span>xk</span>. (Скорость чтения - признак, его значения - x1 = 110, x2 = 92, ..., x36 = 25.) Количество элементов совокупности, имеющих одинаковое числовое значение, мы назвали частотой данной варианты; частоты обозначили через n1, n2, ..., <span>nk</span>; n1 + n2 + ... + <span>nk</span> = n. Отношение частоты варианты к объему совокупности назвали относительной частотой варианты и обозначили через v1, v2, ..., <span>vk</span>; v1 + v2 + ... + <span>vk</span> = 1.
В исследованиях, изучая тот или иной признак, часто приходится сталкиваться с такими совокупностями, члены которых принимают различные значения (наряду с одинаковыми). Такую переменчивость значений признака называют его варьированием. Например, варьирование мы наблюдаем, изучая успешность учащихся по предмету, сформированность некоторого качества личности и т. п.