Решение
m=500г=0,5кг
р=2500кг/м3
V=m/р
V=0,5/2500=0,0002м3
Fa=pgV
Fa=1000*10*0,0002=2Н
По закону ома для полной цепи I=E/R+r I=12/1,6+6,4=1,5
Q1= - r*m. (r - удельная теплота парообразования воды)
Q1= - 2300000*4= 9200000Дж .
Q2=c*m*(t2-t1).
Q2=4200*4*(20 - 100)= 1344000Дж
Q=Q1+Q2.
Q= 9200000 + 1344000= 10544000Дж. (<span>10,5мдж)</span>
Данная задача решается довольно просто, поскольку нам уже дано изменение скорости ядра, при котором, по всей видимости (что нужно будет проверить неравенством), теряется механическая энергия.
Итак: начальный импульс ядра: m vo ;
Начальный момент импульса ядра относительно оси ОО': (L–a) m vo ;
Конечный импульс ядра (сразу после удара) по горизонтальной оси равен нулю, а значит, и конечный момент импульса ядра равен нулю. Тогда изменение момента импульса ядра относительно оси ОО' равно его начальному моменту импульса. Всё это изменение момента импульса ядра превратится в момент импульса дощатого бруса. Обозначив угловую скорость и момент инерции дощатого бруса, соответственно, как: ω и J , мы можем записать:
Jω = (L–a) m vo ; [1]
Кинетическая энергия дощатого бруса равна Jω²/2 и вся она перейдёт в потенциальную энергию, когда он поднимется, повернувшись на угол φ. Нижняя кромка бруса при повороте на угол φ окажется на Lcosφ ниже оси OO'. Таким образом, нижняя кромка поднимется от начального уровня на величину L(1–cosφ), а поскольку центр масс точно вдвое ближе к оси OO', чем нижняя кромка, то общее поднятие центра масс бруса при его повороте на угол φ составит L(1–cosφ)/2 , а изменение потенциальной энергии в поле силы тяжести будет равно: MgL(1–cosφ)/2 . Когда вся кинетическая энергия перейдёт в потенциальную, дощатый брус как раз и окажется в своей верхней точке, т.е. в положении максимального отклонения. Итак, учитывая превращение кинетической энергии в потенциальную, мы можем записать:
Jω²/2 = MgL(1–cosφ)/2 ;
J²ω² = MgJL(1–cosφ) ;
Учтём, что J = ML²/3, тогда:
J²ω² = M²L³g(1–cosφ)/3 ;
Jω = ML√[Lg(1–cosφ)/3] ;
Приравняем к этому уравнение [1] и получим:
(L–a) m vo = ML√[Lg(1–cosφ)/3] ;
vo = [M/m] L/[L–a] √[Lg(1–cosφ)/3] ;
vo = M/[m(1–a/L)] √[Lg(1–cosφ)/3] ;
Проверим ещё, что кинетическая энергия в системе не возрастает, что было бы абсурдом:
vo² = ( M / [m(1–a/L)] )² Lg(1–cosφ)/3 ;
Тогда начальная кинетическая энергия равна:
Eo = mvo²/2 = ( M / [1–a/L] )² Lg(1–cosφ)/[6m] ;
А конечная кинетическая энергия, равная потенциальной, должна быть не больше начальной кинетической:
MgL(1–cosφ)/2 < ( M / [1–a/L] )² Lg(1–cosφ)/[6m] ;
1 < M/[3m(1–a/L)²] ;
(1–a/L)² < M/[3m] ;
1–a/L < √[M/(3m)] ;
ОТВЕТ
при выполнении условия 1–a/L < √[M/(3m)] – начальная скорость описанного движения ядра должна была бы быть:
vo = M/[m(1–a/L)] √[Lg(1–cosφ)/3] .
Луна спутник нашей планеты земля