√2cos²x+cosx=0
cosx(√2cosx-+1)=0
cosx=0⇒x=π/2+πn,n∈z
-5π/2≤π/2+πn≤-π
-5≤1+2n≤-2
-6≤2n≤-3
-3≤n≤-1,5
n=-3⇒x=π/2-3π=-5π/2
n=-2⇒x=π/2-2π=-3π/2
cosx=-1/√2⇒x=-2π/3+2πk,k∈z U x=2π/3+2πm,m∈z
-5π/2≤-2π/3+2πk≤-π
-15≤-4+12k≤-6
-11≤12k≤-2
-11/12≤k≤-1/6
нет решения
-5π/2≤2π/3+2πm≤-π
-15≤4+12m≤-6
-19≤12m≤-10
-19/12≤m≤-5/6
m=-1⇒x=2π/3-2π=-4π/3
Log 2 (2x+1) > 2^2 ( 2 в квадрате) ;
2x+1>2;
2x >2-1;
2x >1;
<span>x > 1\2.</span>
ОДЗ: sinx≠0 ⇒ x≠πk, k∈Z.
Умножаем на sinx≠0
sinx·(2sin²x-3cosx)=3sinx;
sinx·(2sin²x-3cosx)-3sinx=0;
sinx·(2-2cos²x-3cosx-3)=0;
sinx·(2cos²x+3cosx+1)=0
sinx≠0
2cos²x+3cosx+1=0
D=9-2·4=1
cosx=-1 или cosx=-1/2
x=π+2πn, n∈Z или х=± (2π/3)+2πk, k∈Z<span> </span>
не удовл. ОДЗ
б)
х=-(2π/3)-2π=-8π/3∈[-3π, -3π/2]
О т в е т. а) ± (2π/3)+2πk, k∈Z<span> б) </span>-8π/3∈[-3π, -3π/2]