Отметь как лучший))
1) при пересечении 2-х прямых получаются 4 угла, вертикальные углы равны между собой, а смежные в сумме 180° => это вертикальные углы по 25° каждый, а смежные 180-25=155° каждый
2)в равнобедренном треугольнике медиана является биссектрисой и высотой, т. е < АВО=<ОВС.
АВ=ВС(т. К. АВС-равнобед.)
Во - общая.
Отсюда : равенство треугольнике по двум сторонам и углу между ними.
3)треугольник АКС=60°, значит остальные углы равны 180°-60°=120°.
<ВАС=<АСВ( т. К равнобед.), <КАС=2*<АСК=120*2=240/3=80°
<АСВ=<ВАС
Отсюда : <АВС=180-80-80=20°
Есть рисунок? Если да можешь добавить сюда
Вариант 3:
1) у = x^2+вх+с ; M(2;3)
x0 = -в/2а = -в/2 = 2;
-в = 4
в = -4
х^2-4x+c = 3 при y(2) => 2^2-4*2+c=3 => -4+c=3 ==> c = 7
Ответ: в = -4, с = 7
2)y= x^2-2x+1 Пусть F(x) - производная
F(x) = 2x-2
2x-2=0
x = 1
При x > 1 F(x) > 1
При x < 1 F(x) < 1
y = x^2-2x+1 - непрерывная на всей числовой оси
Значит, y = x^2-2x+1 возрастает на интервале (1;+бесконечность) , а убывает на интервале (-бесконечность;1)
3)y=-x^2+6x-1 - парабола, ветви вниз => функция достигает своего наибольшего значения в своей вершине
x = -b/2a = -6/2*(-1) = 3
y(3) = -3^2+6*3-1=-9+18-1=26
y(3) = 26 - наибольшее значение функции
4) y = (x+4)^2-2
гипотенуза 29 см.
катет равен 21 см.
второй катет можно найти через теорему пифагора.
корень из 29в квадрате - 21 в квадрате = корень из 400 = 20
<u>Ответ: 20 </u>
в треугольнике чертим высоту h,
дальше решаем:
h/sin60=9/sin90
h=9*sin60 sin60=Sqrt[3]/2
h=4,5*Sqrt[3]