Во всех примерах проверяется ваше умение использовать разность квадратов и умение сворачивать квадратный многочлен в полный квадрат.
1. 81-(с^2+6с)^2=9^2 - (с^2+6с)^2=(9-с^2-6с)(9+с^2+6с)=(9-с^2-6с)(с+3)^2
16m^2-(m-n)^2=(4m)^2-(m-n)^2=(4m-m+n)(4m+m-n)=(3m+n)(5m-n)
2. 16-(x^2-2xy+y^2)=4^2-(x-y)^2=(4-x+y)(4+x-y)
4-(p^2-2pq-q^2)=2^2-(p-q)^2=(2-p+q)(2+p-q)
3.c^2-d^2+6c+9=(c+3)^2-d^2=(c+3-d)(c+3+d)
r^2-s^2-10s-25=r^2-(s^2+10s+25)=r^2-(s+5)^2=(r+s+5)(r-s-5)
Обозначим как х скорость третьей машины.
К моменту старта третьей машины, первая успела проехать расстояние, равное: 0,5(ч) * 50 (км/ч) = 25 (км) , а вторая: 0,5 * 40 = 20 (км).
Расстояние между первой и третьей сокращается со скоростью X - 50 (км/ч), а между второй и третьей - со скоростью х - 40 (км/ч).
Зная скорости и начальные расстояния, найдём время встречи третьей машины с первой и второй; составим уравнение:
25/(X-50) - 20/(X-40) = 1,5 (ч) ;домножим уравнение на 2(х-40)(х-50) :
50(X-40) - 40(X-50) = 3(X-40)(X-50)
50X -2000 -40X +2000 = 3X^2 -150X -120X +6000
3X^2 - 280X + 6000 = 0
X1 = 60 (км/ч) -скорость третьей машины
X2 = 33 1/3 (км/ч) -ложный корень (т.к. по условию задачи скорость должна быть больше 50 км/ч) Сам раньше решал эту задачу. Вроде правильно.
1)cos 135°=cos(180-45)=-cos45=-√2/2
2) sin 8π/3=sin(3π-π/3)=sinπ/3=√3/2
3) tg 7π/3=tg(2π+π/3)=tgπ/3=√3
4) cos²π/8-sin²π8=cosπ/4=√2/2
Ответ:
x^2=0.64 0.64 под корень получили х=0.8