Первая функция нечетная, а вторая тоже нечетная
Умножим первое уранение на 2.
4х+2у=24
Сложим со вторым
11х=55
х=5
10+у=12
у=2
Ответ: х=5, у=2
Решение
№ 104.
(tg³x - tg³y) / [(1 + tgxtgy)(tg²x + tgxtgy + tg²y)] =
= [(tgx - tgy)*(tg²x + tgxtgy + tg²y)] / [(1 + tgxtgy)(tg²x + tgxtgy + tg²y)] =
= (tgx - tgy) / (1 + tgxtgy) = tg(x - y)
№105.
(cos⁴2a - sin⁴2a) / (cos4a) - (cos2a - sin2a)² =
= [(cos²2a - sin²2a) * (cos²2a + sin²2a)] / (cos4a) - (cos²2a - 2sin2acos2a + sin²2a) = (cos²2a - sin²2a) / cos4a - 1 + 2sin2acos2a =
= cos4a / cos4a -1 + sin4a = 1 - 1 + sin4a = sin4a
№ 106.
[ 1/(1 - tgx) - 1/(1 + tgx)] * (cos²x - sin²x) =
= (1 + tgx - 1 + tgx)*cos2x / (1 - tg²x) =
= [2tgx*(1 - tg²x)] (1 - tg²x)(1 + tg²x)] = 2tgx / (1 + tg²x) = sin2x
F(x)=2x^3-3x^2+2
f'(x) = 6x^2-6x = 6x(x-1) = 0
x1 = 0; f(0) = 2 - это максимум
x2 = 1; f(1) = 2-3+2 = 1 - это минимум.
От -oo до 0 функция возрастает.
От 0 до 1 она убывает.
От 1 до +oo опять возрастает.
На отрезке [-1; 1]
f(-1) = -2-3+2 = -3 наименьшее
f(0) = 2 наибольшее