Поскольку AM перпендикулярна пллоскости квадрата, то она перпендикулярна любой прямой, лежащей в этой плоскости. В частности, AM перпендикулярна сторонам квадрата.
Расстоянием от точки M до вершины B есть отрезок MB. Рассмотрим прямоугольный ΔAMB(<MAB = 90° - по сказанному выше). AB = BC = 12 как стороны квадрата, AM = 5. По теореме Пифагора,
MB = √(AM² + AB²) = √(144+25) = √169 = 13. Итак, расстояние от точки M до вершины квадрата B равно 13 см.
Расстояние от точки M до вершины A есть отрезок MA и равно 5 см.
Найдём расстояние от точки M до вершины C(отрезок MC). Для этого проведём диагональ AC квадрата. Тогда по определению, MA перпендикулярна AC, то есть <MAC = 90°. Рассмотрим прямоугольный треугольник MAC, где AC - диагональ квадрата. MA = 5 см. Диагональ квадрата вычисляется по формуле AC = a√2, где a - длина стороны квадрата. AC = 12√2 см. по теореме Пифагора,
MC = √(MA² + AC²) = √(25 + 288) = √313 см - это расстояние от точки M до вершины C.
Ну и аналогично находим расстояние от точки Mдо вершины D. Для этого надо рассмотреть прямоугольный треугольник MAD и по теореме Пифагора найти гипотенузу MD. этот отрезок и является расстоянием от точки M до врешины D. Задача решена.
Тоже ищу ответы очень сложная для меня задача
1. ∠ABC - вписанный, ∠AOC - центральный. Они опираются на одну и ту же дугу ⇒ ∠AOC = 2∠ABC, откуда ∠ABC = 110°/2 = 55°
2. Градусная мера дуги ABC = 120°. Градусная мера дуги AC = 360° - 120° = 240°. ∠ABC вписан, опирается на AC ⇒ ∠ABC = 240°/2 = 120°
3. ∠ABC опираются на диаметр ⇒ ∠ABC = 90°
4. Вписанные углы ABC и ADC опираются на одну и ту же дугу ⇒ ∠ABC = ∠ADC = 40°
5. Градусная мера дуги ABC = 50°*2 = 100°. Градусная мера дуги ADC = 360° - 100° = 260°. ∠ABC вписан, опирается на ADC ⇒ ∠ABC = 260°/2 = 130°
6. ∠CBD опираются на диаметр ⇒ ∠СBD = 90°. ∠ABC = ∠СBD + ∠DBA = 90° + 30° = 120°
7. ∠CBD опираются на диаметр ⇒ ∠СBD = 90°. ∠ABC = ∠DBA - ∠СBD = 120° - 90° = 30°
8. ∠ABD опираются на диаметр ⇒ ∠ABD = 90°. BO - медиана, так как DO = OA = R. ΔABC р/б, так как AB = BD ⇒ BO не только медиана, но и биссектриса ⇒ ∠ABC = 1/2∠ABD = 45°
9. Градусная мера дуги DBC = 150°*2 = 300°. Градусная мера дуги CAD = 360° - 300° = 60°. Градусные меры дуг AC и AD равны, так как AC = AD ⇒ градусная мера дуги AC = 60°/2 = 30°. ∠ABC вписан, опирается на AC ⇒ ∠ABC = 30°/2 = 15°
10. Градусная мера дуги DC = 30°*2 = 60°. Дугу ACD стягивает диаметр ⇒ градусная мера дуги ACD = 180°. Градусная мера дуги AC = 180° - 60° = 120°. ∠ABC вписан, опирается на AC ⇒ ∠ABC = 120°/2 = 60°
11. Градусная мера дуги BC = 30°*2 = 60°. Дугу ADCB стягивает диаметр ⇒ градусная мера дуги ADCB = 180°. Градусная мера дуги AC = 180° - 60° = 120°. ∠ABC вписан, опирается на AC ⇒ ∠ABC = 120°/2 = 60°
12. Градусная мера дуги EBC = 70°*2 = 140°. Дугу ACBE стягивает диаметр ⇒ градусная мера дуги ACBE = 180°. Градусная мера дуги AC = 180° - 140° = 40°. ∠ABC вписан, опирается на AC ⇒ ∠ABC = 40°/2 = 20°
Ответ в приложенном рисунке.