Пусть<span> arcsin0,6=α, тогда sinα=0,6, α∈[-π/2;π/2] cosα=</span><span>±√(1-sin²α)=</span><span>±√(1-0,6²)=</span><span>±0,8 </span>cosα=0,8, так как <span>α∈[-π/2;π/2]
</span><span>arccos0,8=β, тогда cosβ=0,6, β∈[0;π] sinβ=</span>±√(1-cos²β)=±√(1-0,6²)=<span>±0,8 </span> sinβ=0,8, <span><span>β∈[0;π]</span></span> sin(arcsin0,6+arccos0,8)=sin(α+β)=sinα·cosβ+cosα·sinβ= =0,6·0,6+0,8·0,8=1