Здесь все предельно просто и понятно
1) формула sin2x=2sinx*cosx
нам дано: 8sin^2п/8*cos^2п/8
сопоставив формулу и выражение мы получим:
4sinп/4
2) формула cos2x=cos^2x-sin^2x
нам дано: 4cos^2п/8-4sin^2п/8
сопоставляем, получаем: 4cosп/4
2p^4+ap-2ap-a^3-2p^4=-ap-a^3=a(p-a^2)
1)log27(3+log2(x+2))=0
log27(3+log2(x+2))=log27 1
3+log2(x+2)=1
3 log2 2+log2(x+2)=log2 2
log2(2^3)+log2(x+2)=log2 2
log2( 8(·x+2)=log2 2 ОДЗ : х+2>0 x>-2
8(х+2)=2
8х+16=2
8х=2-16
8х=-14
х=-14:8
х=-1,75 -1,75>-2 (ОДЗ)
Ответ:-1,75
2) log3² (x)-3log3(x)=-10^lg2
1\2log3(x)-log3(x³)=-2
log3(√x)\x³=-2log3 3 ОДЗ:х>0
√x\x³=1\9
9√x=-x³
-x²√x=9
x^(5|2)=-9 корней нет ( возможно что то в условии было непонятно)
3) log(x+2) (3x²-12)=2
log(x+2) (3x²-12)=log(x+2) (x+2) ОДЗ: х+2≠1 х≠-1 и х+2>0 x>-2
3x²-12=x+2
3x²-x-14=0
D=1-4·3·(-14)=1+168=169 √D=13
x1=(1+13)\6=7\3=2 1\3
x2=(1-13)\6=-12\6=-2 ( не является корнем , ОДЗ исключает )
Ответ: х=2 1\3
5)log2 (2x-3)+ log2 (1-x)=1
log2 (2x+3)(1-x)=log2 2 ОДЗ:2х+3>0 2x>-3 x>-1.5
1-x>0 -x>-1 x<1
2x+3)(1-x)=2
2x-2x²+3-3x-2=0
2x²+x-1=0
D=1-4·2·(-1)=9 √D=3
x1=(-1+3)\4=1\2
x2=(-1-3)\4=-1
x1·x2=-1·1\2=-1\2
6) log2 x+ logx 16=5 Одз: х≠1 х>0
log 2 x+ 1\(log16 x)=5
log2 x+1\(log2^4 (x))=5
log2 x +4\(log2 x)=5
log² 2 x+4 -5log2 x=0
введём замену переменной , пусть log2 x=y
y²-5y+4=0
D=25-4·4=9 √D=3
y1=(5+3)\2=4
y2=(5-3)\2=1
возвращаемся к замене:
log2 x=4
x=2^4=16
log2 x=1
x=2
x1+x2=16+2=18
условие примера 4 не совсем точно понимаю, уточните
f(x) = 1/3x³ - x² - x + 1
Пусть в точке х = а касательная к кривой, заданной функцией f(x), параллельна прямой y=2x-1.
f(a) = 1/3а³ - а² - а + 1
Найдём производную
f'(x) = x² - 2x - 1
f'(a) = 2, т.е.
а² - 2а - 1 = 2
Отсюда
а² - 2а - 3 = 0
D = 4 + 12 = 16
√D = 4
a₁ = (2 - 4):2 = -1
a₂ = (2 + 4):2 = 3
Найдём f(a₁) = -1/3 - 1+ 1 + 1 = 2/3
f(a₂) = (1/3)·27 - 9 - 3 + 1 = - 2
Ответ: А₁(-1, 2/3), А₂(3, -2)