1. Т.к. OK=8 см ,то середина OK (вводим точку M)=2OM=2MK,значит OK:2=OM=MK=8:2=4 см
2.Т.к. OL=14 см , то (вводим точку H) OL:2=OH=HL=14:2=7 см
3) Значит HM=HO+OM=7+4=11 см
Номер 1.
1) Рассмотрим треугольники КBN и ABC : угол B - общий , сторона AB пропорциональна стороне KB и СВ пропорциональна стороне BM , значит, эти треугольники подобны .
2) AB/KB = CB/MB = AC/ KM - отсюда следует , что 9/3 = 6/2 = 12 / KM
КМ = 24/6 = 4
Ответ : КМ= 4 , подобие доказано
<span>Через точку пересечения диагоналей прямоугольника АВСD проведен перпендикуляр SO к плоскости АВС. <u>Найти SA</u>, если SO=3 см, BD=8 см.</span>
________
<em>В прямоугольнике диагонали равны и точкой пересечения делятся пополам.</em> АС=ВD=8 ⇒
АО=4 см
По условию SO⊥ плоскости АВС, точка О принадлежит АС ⇒ SO⊥АС.
Δ SOA- прямоугольный с отношением катетов 3:4, это "египетский" треугольник, и его гипотенуза SА=5 ( можно проверить по т.Пифагора)