Поверхностью называют множество последовательных положений линий, перемещающихся в пространстве. Эта линия может быть прямой или кривой и называется образующей поверхности. Если образующая кривая, она может иметь постоянный или переменный вид. Перемещается образующая по направляющим, представляющим собой линии иного направления, чем образующие. Направляющие линии задают закон перемещения образующим. При перемещении образующей по направляющим создается каркас поверхности (рис. 84), представляющий собой совокупность нескольких последовательных положений образующих и направляющих. Рассматривая каркас, можно убедиться, что образующие l и направляющие т можно поменять местами, но при этом по верхность получается одна и та же.
Любую поверхность можно получить различными способами. Так, прямой круговой цилиндр (рис. 85) можно создать вращением образующей l вокруг оси г, ей параллельной. Тот же цилиндр образуется
Если скалярное произведение векторов равно нулю, то векторы перпендикулярны.
AB {2-0; 3-1}
AB {2; 2}
BC {-1-2; 6-3}
BC {-3; 3}
AB*BC = x₁x₂ + y₁y₂ = -3*2 + 3*2 = -6 + 6 = 0
Раз произведение равно нулю, то векторы перпендикулярны.
Sтрапеции= (a+b)*h/2=>
42=h*7/2 => h=42*2/7=12
Sтреугольника=a*h/2
=>
S=1*12/2=6
в плоскости - окружность с радиусом 5, АВ хорда-диаметр секущей плоскости, ОВ=ОА=5- радиус, ОН перпендикуляр на АВ, ОН=3, треугольник НОВ прямоугольный, НВ=корень(ОВ в квадрате-ОН в квадрате)=корень(25-9)=4= радиусу секущей плоскости, площадь секущей=пи*радиус в квадрате=4*4*пи=16пи