<u>Ответ</u>: 40,4 (ед. длины)
<u>Объяснение</u>:
Диагонали квадрата являются его биссектрисами и делят его углы на два по 45°. СА перпендикулярна MN (дано), ⇒треугольники МАС и САN - прямоугольные. Поэтому градусная величина углов СМA и CNA – 45°, они равны между собой. Отсюда <em><u>треугольники СМA и CNA прямоугольные равнобедренные</u></em> (углы при их основаниях СМ и СN равны) с общим катетом СА. Они равны между собой. МС=СN, МА=NА. Треугольник МСN равнобедренный, отрезок <u>СА для треугольника СМN является медианой</u> и равен половине гипотенузы MN. ⇒ MN=2•CA=2•20,2=40.4 ед. измерения.
V= 1/3S(oснови)*h
Sосн=(а^2* √3)/4=<span> √3
v=5/</span><span><span> √3</span></span>
Угол 3=углу 1 = 132 градуса, угол 3 + угол 2 = 180 град., значит угол 3 = 180 - 132 =48 градусов