V=пи*r^2*h;
h=V/пи*r^2;
d=1 => r=1/2;
h=пи/пи (1/2)^2;
h=4.
По неравенству треугольника a+m>c/2, m+c/2>b, отсюда a+2m+c/2>b, то есть (a-b)/2<m. Таким же образом (b-a)/2<m, значит правое неравенство доказано
Пусть треугольник у нас ABC и медиана CD. Далее везде предполагаются векторы а не отрезки. CD+DA=CA, CD+DB=CB, отсюда 2CD+DA+DB=CA+CB, но DA+DB=0, значит 2CD=CA+CB, и значит 2m<a+b,