АВ = 6 см, АС = 8 см, ВС = 10 см.
Заметим, что сумма квадратов двух сторон равна квадрату третьей стороне, т.е. 36 + 64 = 100, значит тр-ник АВС прямоугольный, ВС - гипотенуза.
Мы имеем пирамиду, боковые грани которой - равнобедренные тр-ки с боковыми сторонами МВ = МА = МС = 15 см.
МО - расстояние от точки М до плоскости тр-ка, т.е. перпендикуляр.
Прямоугольные тр-ки МОА = МОВ = МОС по гипотенузе (АМ = ВМ = СМ) и катету ОМ (он у них общий). Из равности этих тр-ков следует равность сторон ОА = ОВ = ОС. Значит О - центр окружности, описанной около тр-ка АВС. Тогда гипотенуза ВС является диаметром окружности, значит радиусы ОА = ОВ = ОС = 10 : 2 = 5 (см) как половина диаметра.
Из любого прямоугольного тр-ка с вершиной в точке М вычислим по теореме пифагора расстояние от точки М до плоскости тр-ка АВС:
МО = √(225 - 25) = √200 = 10√2 (см)
Ответ: 10√2 см
<span>Без рисунка объаснить сложно. См. вложение.
Даны прямые а и b.
Нужно на прямой а построить точку (пусть это будет точка М), расстояние от которой до прямой b будет равно длине отрезка PQ,
Известно, что<em> расстояние от точки до прямой равно длине перпендикуляра</em>, <em>проведенного из этой точки к данной прямой</em>.
<span>Построим на прямой b перпендикуляр по общеизвестному способу: начертим две пересекающиеся окружности одинакового произвольного радиуса с центрами на прямой b, точки пересечения соединим и получим перпендикуляр.
На этом перпендикуляре отложим <u>ТЕ=длине отрезка PQ</u>.
Через точку Е проведем параллельно прямой b прямую до пересечения с прямой а. ( Это сделаете так же, как строили перпендикуляр к b)
Так как расстояние между всеми точками параллельных прямых одинаково, точка М на прямой а и есть искомая точка.
Расстояние от нее до прямой b равно длине отрезка PQ</span></span>
Бери за х основание, тогда боковые будут х+17. Х+х+17+х+17=77(три стороны), вычисляй основание, а потом сложение.
Вроде так, но это если не учитывать четверть в которой лежит а
Пусть меньшее основание равно 2b, а большее тогда будет 6b
Если провести среднюю линюю и соединить "<span>конец большего основания, не принадлежащий этой стороне" и середину диагонали, не содержащей этот "конец", то получится НЕравнобедренная трапеция с основаниями b и 6b, причем одной из диагоналей этой трапеции будет тот самый отрезок, которым соединены "с<span>ередина одной из боковых сторон и конец большего основания, не принадлежащий этой стороне" исходной трапеции. А вторая диагональ равна 21 - половине диагонали исходной трапеции. </span></span>
<span><span>Точка пересечения делит ЭТИ диагонали на части в отношении, равном отношению оснований, то есть 1:6, - то есть половину диагонали исходной трапеции она делит на отрезки 3 и 18. </span></span>
<span><span>Поэтому всю диагональ исходной трапеции эта точка делит на отрезки 18 и 21+3 = 24.</span></span>