Пусть хорда АВ в основании -пересечение плоскости и основания. Из центра окружности О основания опустим на хорду перпендикуляр ОС, который разделит хорду пополам. Угол АОВ - центральный, т.е. равен угловому измерению дуги АЛЬФА. В треугольнике ДСО линейный угол ДСО = ФИ, поэтому СО=h*сtgФИ. Из треугольника АОС радиус R=АО=ОС/cos(АЛЬФА/2)=h*ctgФИ/cos(АЛЬФА/2). Дальше ищи объём по формуле "ПИ"*R^2*h/3.
ΔABC
AB=BA=? на 11см <AC
P=50см
S=?
Решение:
2X+(X+11)=50
2X+X+11-50=0
2X+X-39=0
3X-39=0
3X=39 X=39÷3=13см
Проверяем:
(13+11)+13+13=50, значит AB=BA=13, а AC=24.
Теперь находим высоту, ведь SΔ=1/2основания × высоту(h)
Проводим из вершины треугольника высоту к середине основания, соотвецтвенно делим AC на 2 получаем 2 стороны AH=CH=12 по теоремме пифагора
c²=a²+b², где С=13, а А=12
13²=169; 12²=144
b²=169-144=25; b=<u><em>
</em></u>
=5
S=12×5=60см²
Ответ: 60см²<u><em>
</em></u>
Либо Вы условие неверное дали, либо просто чертите любую прямую линию и давайте ей название СОК. Развёрнутый угол - угол в 360 градусов, значит, как прямая линия.
решение в прикреплённом файле
Выразим диагонали ромба через стороны и углы:
(где
-сторона ромба)
Площадь ромба равна:
, отсюда угол ABC = 45, угол BCD=135