//////////////////////////////////////////////////////////
1. Восьмеричное число записываем двоичными триадами (с конца по 3 разряда), заменяя каждую 8-ю цифру двоичной триадой, потом записываем двоичными тетрадами (с конца по 4 разряда) и каждую тетраду заменяем 16-й цифрой.
754(8) = 111 101 100 (2) = 1 1110 1100 (2) = 1EC (16)
Ответ 3)
2. Ответы даны в двоичной системе, в нее все и переводим.
A = 9D(16) = 1001 1101(2); B = 237(8) = 10 011 111 (2) = 1001 1111(2)
Неравенство записано словами как-то странно.
Если подразумевалось A<C<B, то ответ 1001 1110, т.е. 2)
А если A<C и A<B, то ответы 2), 3), 4), поэтому наверно все же условие было A<C<B.
3. Тут все так же.
A = F7(16) = 1111 0111 (2); B = 371(8) = 11 111 001(2) - 1111 1001(2)
Неравенству A<C<B удовлетворяет ответ 4)
4. Поскольку кроме "удобных" для сравнения систем по основанию 16,8,2 есть число в десятичной системе, переведем все числа в 16-ю - это наиболее быстро (минимум делений).
347(8) = 11 100 111(2)= 1110 0111(2)=E7(16);
1110 0101(2) = E5(16);
232(10)/16 = 14, остаток 8 -> 232(10) = E8(16)
Сравниваем E6, E7, E5, E8: наименьшее E5, т.е. 11100101(2)
5. Аналогичное решение.
234(8) = 10 011 100(2) = 1001 1100(2) = 9C(16);
1001 1010(2) = 9A(16);
153(10)/16=9, остаток 9 -> 153(10) = 99(16)
Сравниваем 9B, 9C, 9A, 99: наибольшее 9С, т.е. 234(8)
Оживлёная улица.Мальчик идёт со школы с рюкзаком.На светофоре горит зелёный свет.Машины остоновились и мальчик начинает переходить дорогу.