Радиус описанной окружности около треугольника равен отношению сторон к 4 площади.
R = abc/4S.
S = 0,5 ab. ab - катеты.
S = 0,5*8*15=60 см^2.
По теореме Пифагора найдём гипотенузу.
с=√а^2+b^2.
с=√64+225=17 см.
R = 8*15*17/4*60=8,5 см.
Радиус вписанной окружности в прямоугольный треугольник равен разности полупериметра и гипотенузы.
r=p-c.
p=(8+15+17)/2 = 20 см.
r=20-17=3 см.
ВС - это катет, лежащий против угла в 30°, он равен половине гипотенузы АВ. Значит АВ = 100√3. АС находим по теореме Пифагора: АС² = АВ² - ВС².
АС²=(100√3)² - (50√3)² = 30000 -7500 =22500.
АС =√(22500) = 150.
Дан равнобедренный треугольник АВС, <span>высота СЕ и основание АВ которого равны 8 см и 12 см соответственно.
Точка Д н</span><span>аходится на расстояние 4 см от плоскости треугольника и равноудалена от его сторон.
</span><span>Найдите расстояние от точки Д до сторон треугольника.
</span>
Проекция отрезка ДЕ на АВС - это радиус r вписанной окружности в треугольник АВС.
r = S/p (р - полупериметр).
АС = ВС = √(8² + (12/2)²) = √(64 + 36) = √100 = 10 см.
р = (2*10+12)/2 = 32/2 = 16 см.
S = (1/2)*12*8 = 48 см².
Тогда r =48/16 = 3 см.
Отрезок ДЕ как расстояние от точки Д до стороны треугольника АВС равен:
ДЕ = √(3² + 4²) = √(9 + 16) = √25 = 5 см.
Площади треугольников ABC и CDB равны между собой.
A и D находятся на равном расстоянии от BC и AD параллельна BC.
Треугольник ABC - равносторонний, т. к. уголы BCA, CAD и BAC равны.
<span>Так что BC = AB = 4.</span>