Определение: "Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям)".
Итак, <ABC=90°, АВ=ВС (дано).
Опустим перпендикуляры из вершины В на плоскость α и гипотенузу АС. Тогда <BHP является линейным углом двугранного угла между плоскостями АВС и α по определению. Пусть катеты треугольника АВС равны "а". ВН - высота из прямого угла равнобедренного треугольника АВС. ВН = а√2/2. В прямоугольном треугольнике ВНР острый угол равен 45°, значит треугольник равнобедренный и ВР = ВН*√2/2 = а√2/2*(√2/2) = а/2. В прямоугольном треугольнике ВРС угол ВСР - это угол между наклонной ВС и ее проекцией РС на плоскость α, то есть это угол между наклонной и плоскостью по определению.
Sin(<BCP) = ВР/ВС или Sin(<BCP) = а/2/а =1/2. =>
<BCP = arcsin(1/2) = 30°. Это ответ.
<span>Если в четырехугольнике диагонали, пересекаясь, точкой
пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Продлим
медиану за точку пересечения с гипотенузой и отложим отрезок, равный
медиане. Тогда получившийся четырехугольник - параллелограмм (смотри
определение). А параллелограмм, у которого углы прямые - прямоугольник.
В прямоугольнике диагонали равны. Значит гипотенуза ВС равна 4см. По Пифагору </span><span><span>находим </span>катеты: ВС² = 2Х², откуда Х = 2√2см.
</span>
Ответ:
144°.
Объяснение:
В четырёхугольнике сумма углов равна 360°.
2+3+7+8 = 20(частей) - сумма углов
360°/20 = 18° - в 1 части
18°*8 = 144° - наибольший угол четырёхугольника
АВ=(8-1;0-(-3))=(7;3)
|АВ|=√58
DC=(-4(-3);8-5)=(7;-3)
|DC|=√58
BC=(4-8;8-0)=(-4;8)
|BC|=√80
AD=(-3-1;5-(-3))=(-4;8
|AD|=√80
AB=DC;BC=AD
Модуль длины вектора=длина стороны
3-ий признак параллелограмма
Если у четырёхугольника пара противоположных сторон равны,то четырёхугольник-параллелограмм