Полёт<span> — один из основных способов передвижения множества </span>насекомых<span> различных отрядов, помогающий им искать пищу, полового партнёра для размножения, расселяться и мигрировать, спасаться от хищников. </span>Насекомые<span>первыми на Земле выработали способность к </span>полёту<span> и поднялись в воздух, являясь единственной группой</span>беспозвоночных<span>, способной к полёту. Благодаря появлению крыльев, насекомые стали более быстрыми, маневренными, приобрели способность к регулярным миграциям, резко усложнилось их поведение. Увеличились возможности для питания и размножения и появились новые способы для избегания врагов. Изучение принципов полёта насекомых представляет большой интерес для сравнительной </span>физиологии, систематики, прикладнойэнтомологии<span> и </span>бионики<span>.</span>
Б ) вроде так но это не точто
Ответ:
Объяснение:
Синтезированная в ядре иРНК отделяется от ДНК и через поры ядерной оболочки поступает в цитоплазму, где связывается с малой субъединицей рибосомы.
Рибосомы — это органоиды диаметром 17—25 нм, являющиеся местом синтеза белка из аминокислот. Они обнаружены в клетках всех организмов, в том числе прокариотических.Каждая рибосома состоит из двух нуклеопротеидных субъединиц разной величины, формы и химического строения, удерживающихся вместе благодаря присутствию в них ионов магния.
С иРНК может связываться не одна рибосома, а последовательно около десятка, которые расположены одна за другой подобно жемчужинам на нитке, в виде так называемой полисомы. Образование полисом повышает эффективность функционирования тРНК за счет того, что одновременно синтезируется несколько полипептидных цепей.
Отсюда молекула иРНК прерывисто, триплет за триплетом, продвигается через рибосомы, что сопровождается ростом полипептидной цепочки. Число аминокислот в таком белке равно числу триплетов иРНК.
Выстраивание аминокислот в соответствии с кодонами иРНК осуществляется на рибосомах при помощи транспортных РНК — важнейших участников синтеза белка. Каждая тРНК имеет акцепторный конец, к которому присоединяется активированная аминокислота. Активацию аминокислот осуществляют специфичные ферменты аминоацил-тРНК-синтетазы, т.е. для каждой аминокислоты существует свой фермент. Механизм активации заключается в том, что фермент одновременно взаимодействует с соответствующей аминокислотой и с АТФ, которая теряет при этом пирофосфат. Тройной комплекс из фермента, аминокислоты и АТФ называет активированной (богатой энергией) аминокислотой, способной спонтанно образовать пептидную связь в молекулах полипептидов. Этот процесс активации — необходимый этап белкового синтеза, поскольку свободные аминокислоты не могут прямо присоединяться к полипептидной цепи.
В противоположной части молекулы тРНК располагается специфический триплет (антикодон), ответственный за прикрепление по принципу комплементарности к определенному триплету иРНК (кодону); отсюда и название — антикодон. Таким образом, именно комплексы аминоацил-тРНК считывают информацию, закодированную в иРНК.
Комплекс аминоацил-тРНК за счет образования временных водородных связей с помощью антикодона присоединяется к кодону иРНК. За счет образования временных водородных связей к определенному триплету иРНК (кодону); отсюда и название — антикодон. Таким образом, именно комплексы аминоацил-тРНК считывают информацию, закодированную в иРНК.
Комплекс аминоацил-тРНК с помощью антикодона при соединяется к кодону иРНК.
После того, как иРНК вышла из ядра и прикрепилась к малой субъединице рибосомы, к и РНК присоединяется инициаторная тРНК. Ее антикодон взаимодействует со стартовым кодоном иРНК — АУГ. Далее к малой субъединице рибосомы присоединяется большая субъединица и формируется рабочая рибосома. На инициаторной тРНК находится аминокислота метионин. В рибосому транспортная РНК доставляет следующую активированную аминокислоту. Если антикодон этой тРНК комплементарен следующему за стартовым кодоном, то между кодоном и антикодоном образуются временные водородные связи, благодаря чему в рибосоме окажутся две рядом стоящие активированные аминокислоты, между которыми возникает пептидная связь. Вслед за этим иРНК продвигается на один триплет вперед; инициаторная тРНК вытесняется из рибосомы, а ее место в рибосоме занимает следующая за ней тРНК. На свободное место в рибосому доставляется следующая активированная аминокислота, и если антикодон доставившей ее тРНК соответствует кодону иРНК, то рядом в рибосоме сном окажутся две активированные аминокислоты. Это вновь вызовет образование пептидной связи между строящейся цепью белка и аминокислотным остатком и вслед за этим продвижение цепи иРНК на один триплет вперед и т. д. Таким путем осуществляется последовательно, триплет за триплетом, протягивание цепи иРНК через рибосому, в результате чего цепь иPНК «прочитывается» рибосомой целиком, от начала до конца. Одновременно и сопряженно с этим, происходит последовательное, аминокислота за аминокислотой, наращивание белковой цепочки.
Гамбузия, она кушает личинок комаров рода Анофелес, биологический метод борьбы)