Ответ:
с₃ = 3
Пошаговое объяснение:
с₁ = 5
с₂ = 5-1=4
с₃ = 4-1 = 3
ИЛИ
c₁ = 5
d = -1
c₃ = c₁ +d(n-1) = 5 -1*(3-1)=5-2 = 3
<span>Ответ: 16
Обозначим треугольник ABC: AB=13 см, BC=15см, AC=14см.
KA - перпендикуляр к плоскости треугольника ABC.
По условию задачи необходимо найти длину KA.
В треугольнике ABC проведем перпендикуляр AH.
Рассмотрим треугольник ABH. Он является прямоугольным (угол AHB равен 90 градусов). По теореме Пифагора
(AB)^2 = (AH)^2 + (BH)^2
169 = (AH)^2 + (BH)^2
(BH)^2 = 169 - (AH)^2 (*)
Рассмотрим AC. AC = 14 см.
AC = AH + HC
HC = AC - AH
HC = 14 - AH
Рассмотрим треугольник AHC. Он является прямоугольным (угол BHC равен 90 градусов). По теореме Пифагора
(BC)^2 = (BH)^2 + (HC)^2
225 = (BH)^2 + (14-AH)^2
(BH)^2 = 225 - (14-AH)^2 (**)
Из (*) и (**)
169 - (AH)^2 = 225 - (14-AH)^2
169 - (AH)^2 = 225 - 196 + 28AH - (AH)^2
28AH = 140
AH = 5
(BH)^2 = 169 - (AH)^2 = 169 - 25 = 144
BH = 12
KH - наклонная
BH - проекция наклонной KH на плоскость ABC
BH и AC перпендикулярны (по построению)
По теореме о трех перпендикулярах KH и AC перпендикулярны.
Следовательно KH - расстояние от точки K до прямой AC и KH=20.
Рассмотрим треугольник KBH. Он является перпендикулярным (угол KBH равен 90 градусов). По теореме Пифагора
(KH)^2 = (BK)^2 + (BH)^2
400 = (BK)^2 + 144
(BK)^2 = 256
BK = 16</span>
5020+z=36054*23
z=829242-5020
z=824222
48+(-67)=-19
69+84=153
-7,24+5,18=-2,06