ABCD - параллелограмм.
DE - биссектриса.
Она отсекает равнобедренный треугольник (EC=CD).
Получаем, что CD=AB=8 (по условию), AD=BE+EC=10
Периметр получается 10+10+8+8=36
Искомое уравнение прямой - это по сути уравнение прямой по направляющему вектору и точке на прямой. В уравнении, вида:
(x - x1)/a = (y-y1)/b = (z - z1)/c
Коэффициенты а, b, с - это координаты направляющего вектора, а числа x1, y1, z1 - это координаты точки, через которую проходит прямая.
В данной задаче направляющий вектор является нормальным вектором к заданной прямой: s(2, -1, 3)
Таким образом, мы знаем координаты вектора, перпендикулярного искомой прямой (перпендикуляра) .
Теперь вспомним еще один вид уравнения прямой:
Ax + By + Cz + D = 0
В этом уравнении коэффициенты A, B, C -это координаты нормального вектора, т. е. вектора перпендикулярного этой прямой. Но ведь мы уже знаем координаты перпендикулярного вектора! ! То есть, мы знаем почти все уравнение:
2x - y + 3z + D = 0
Однако надо найти коэффициент D. А это сделать очень просто: дело в том, что точка А (2,3,1) по условию лежит на данной прямой. Так что если подставить её координаты в уравнение прямой, уравнение обратится в тождество. Подставим:
2*2 - 3 + 3 + D = 0
4 + D = 0
D= -4
<span>Ответ: искомое уравнение перпендикуляра: 2х - у + 3z - 4 = 0</span>
<span>Расстояние от вершины C треугольника ABC до прямой AB - это высота, опущенная из вершины С на сторону АВ.
Пусть основание этой высоты - точка К.
Тогда в прямоугольном треугольнике ВКС катет КС в 2 раза меньше гипотенузы ВС, значит, он лежит против угла в 30 градусов.
Так как прямая а параллельна ВС, то расстояние от точек В и С до прямой а одинаково.
Опустим перпендикуляр ВД из точки В на прямую а, угол АВД будет равен 90-30 = 60 градусов.
Тогда искомое расстояние до прямой а равно 10*cos60 = 10*0.5 = 5.
</span>