<span>(a4−b4)(a4−a2b2+b4)/(a2−b2)=(a2-b2)(a2+b2)(a4-a2b2+a4)/(a2-b2)=(a2+b2)(a4-a2b2+b4)=a6+b6</span>
A6/a1=a1q^5/a1=q^5=9
a16/a6=a1q^15/a1q^5=q^10=(q^5)²=9²=81
<span>16-й член этой прогрессии больше ее 6-го члена в 81раз</span>
1)5 7/10 - 4 6/35 = 57/10 - 146/35 = (57 × 7 - 146 × 2)/70 = (399 - 292)/70 = 107/70 = 1 37/70
2) 23,1 ÷ 1 37/70 = 23 1/10 ÷ 1 37/70 = 231/10 ÷ 107/70 = 231/10 × 70/107 = 1617/107 = 15 12/107
3) 30 - 15 12/107 = 30 - 1617/107 =(30 × 107 - 1617 × 1)/107 = (3210 - 1617)/107 = 1593/107 = 14 95/107
ОТВЕТ : 14 95/107
⁴√54 * ⁴√24=4<span>√1296=6</span>
(-3 * ⁵√ 1/9)⁵= -243*1/3=-81
∛128 / ∛2= ∛64= 4